Gradient almost Yamabe solitons immersed into a Riemannian warped product manifold

被引:0
|
作者
Tokura, Willian [1 ]
Adriano, Levi [2 ]
Batista, Elismar [3 ]
Bezzera, Adriano [4 ]
机构
[1] Fed Univ Grande Dourados, Dept Math, FACET, Dourados, MS, Brazil
[2] Univ Fed Goias, Inst Math & Stat, Goiania, GO, Brazil
[3] Fed Inst Tocantins, Dept Math, Dianopolis, TO, Brazil
[4] Fed Inst Goiano, Dept Math, Trindade, GO, Brazil
关键词
Yamabe solitons; almost Yamabe solitons; totally geodesic hypersurface; warped product; totally umbilical hypersurface; rotational gradient Yamabe solitons; CONSTANT MEAN-CURVATURE; CLASSIFICATION;
D O I
10.55730/1300-0098.3524
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this article is to study the geometry of gradient almost Yamabe solitons immersed in warped product manifolds I x f M n whose potential is given by the height function from the immersion. First, we present some geometric rigidity on compact solitons due to a curvature condition on the warped product manifold. In the sequel, we investigate conditions for the existence of totally geodesic, totally umbilical, and minimal solitons. Furthermore, in the scope of constant angle immersions, a classification of rotational gradient almost Yamabe solitons immersed in R x f R n is also made.
引用
收藏
页码:541 / 556
页数:17
相关论文
共 50 条
  • [1] On warped product gradient Yamabe solitons
    Tokura, W.
    Adriano, L.
    Pina, R.
    Barboza, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 473 (01) : 201 - 214
  • [2] Properties of Warped Product Gradient Yamabe Solitons
    Willian Tokura
    Marcelo Barboza
    Levi Adriano
    Romildo Pina
    Mediterranean Journal of Mathematics, 2023, 20
  • [3] Properties of Warped Product Gradient Yamabe Solitons
    Tokura, Willian
    Barboza, Marcelo
    Adriano, Levi
    Pina, Romildo
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (05)
  • [4] On Finslerian Warped Product Gradient Yamabe Solitons
    W. Tokura
    L. Adriano
    R. Pina
    M. Barboza
    Bulletin of the Brazilian Mathematical Society, New Series, 2022, 53 : 873 - 894
  • [5] On Finslerian Warped Product Gradient Yamabe Solitons
    Tokura, W.
    Adriano, L.
    Pina, R.
    Barboza, M.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2022, 53 (03): : 873 - 894
  • [6] Gradient Yamabe Solitons on Multiply Warped Product Manifolds
    Karaca, Fatma
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2019, 12 (02): : 157 - 168
  • [7] ON A CLASSIFICATION OF WARPED PRODUCT MANIFOLDS WITH GRADIENT YAMABE SOLITONS
    Choi, Jin Hyuk
    Kim, Byung Hak
    Lee, Sang Deok
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (01): : 261 - 268
  • [8] A Note on Warped Product Almost Quasi-Yamabe Solitons
    Blaga, Adara M.
    FILOMAT, 2019, 33 (07) : 2009 - 2016
  • [9] Gradient Ricci-Yamabe solitons on warped product manifolds
    Karaca, Fatma
    FILOMAT, 2023, 37 (07) : 2199 - 2207
  • [10] Study on Twisted Product Almost Gradient Yamabe Solitons
    Kim, Byung Hak
    Choi, Jin Hyuk
    Lee, Sang Deok
    JOURNAL OF MATHEMATICS, 2021, 2021