End resection and telomere healing of DNA double-strand breaks during nematode programmed DNA elimination

被引:1
作者
Estrem, Brandon [1 ]
Davis, Richard E. [2 ]
Wang, Jianbin [1 ,3 ]
机构
[1] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA
[2] Univ Colorado, Sch Med, Dept Biochem & Mol Genet, Aurora, CO 80045 USA
[3] Univ Tennessee, UT ORNL Grad Sch Genome Sci & Technol, Knoxville, TN 37996 USA
基金
美国国家卫生研究院;
关键词
REGULATED CHROMOSOMAL BREAKAGE; CHROMATIN DIMINUTION; GENOME-WIDE; R-LOOPS; ASCARIS; SEQUENCES; REPAIR; RECOMBINATION; TRANSCRIPTION; TETRAHYMENA;
D O I
10.1093/nar/gkae579
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Most DNA double-strand breaks (DSBs) are harmful to genome integrity. However, some forms of DSBs are essential to biological processes, such as meiotic recombination and V(D)J recombination. DSBs are also required for programmed DNA elimination (PDE) in ciliates and nematodes. In nematodes, the DSBs are healed with telomere addition. While telomere addition sites have been well characterized, little is known regarding the DSBs that fragment nematode chromosomes. Here, we used embryos from the human and pig parasitic nematode Ascaris to characterize the DSBs. Using END-seq, we demonstrate that DSBs are introduced before mitosis, followed by extensive end resection. The resection profile is unique for each break site, and the resection generates 3 '-overhangs before the addition of neotelomeres. Interestingly, telomere healing occurs much more frequently on retained DSB ends than on eliminated ends. This biased repair of the DSB ends may be due to the sequestration of the eliminated DNA into micronuclei, preventing neotelomere formation at their ends. Additional DNA breaks occur within the eliminated DNA in both Ascaris and Parascaris, ensuring chromosomal breakage and providing a fail-safe mechanism for PDE. Overall, our data indicate that telomere healing of DSBs is specific to the break sites responsible for nematode PDE. Graphical Abstract
引用
收藏
页码:8913 / 8929
页数:17
相关论文
共 86 条
[1]   R Loops: From Transcription Byproducts to Threats to Genome Stability [J].
Aguilera, Andres ;
Garcia-Muse, Tatiana .
MOLECULAR CELL, 2012, 46 (02) :115-124
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   DNA-SYNTHESIS IN THE EARLY EMBRYO OF THE NEMATODE ASCARIS-SUUM [J].
AZZARIA, M ;
MCGHEE, JD .
DEVELOPMENTAL BIOLOGY, 1992, 152 (01) :89-93
[4]   DIMINUTION OF HETEROCHROMATIC CHROMOSOMAL SEGMENTS IN CYCLOPS (CRUSTACEA, COPEPODA) [J].
BEERMANN, S .
CHROMOSOMA, 1977, 60 (04) :297-344
[5]   Programmed chromosome fragmentation in ciliated protozoa: multiple means to chromosome ends [J].
Betermier, Mireille ;
Klobutcher, Lawrence A. ;
Orias, Eduardo .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2023, 87 (04)
[6]   Programmed Rearrangement in Ciliates: Paramecium [J].
Betermier, Mireille ;
Duharcourt, Sandra .
MICROBIOLOGY SPECTRUM, 2014, 2 (06)
[7]   Telomeres and telomerase:: the path from maize, Tetrahymena and yeast to human cancer and aging [J].
Blackburn, Elizabeth H. ;
Greider, Carol W. ;
Szostak, Jack W. .
NATURE MEDICINE, 2006, 12 (10) :1133-1138
[8]   Mendelian nightmares: the germline-restricted chromosome of songbirds [J].
Borodin, Pavel ;
Chen, Augustin ;
Forstmeier, Wolfgang ;
Fouche, Simone ;
Malinovskaya, Lyubov ;
Pei, Yifan ;
Reifova, Radka ;
Ruiz-Ruano, Francisco J. ;
Schlebusch, Stephen A. ;
Sotelo-Munoz, Manuelita ;
Torgasheva, Anna ;
Vontzou, Niki ;
Suh, Alexander .
CHROMOSOME RESEARCH, 2022, 30 (2-3) :255-272
[9]   Genomes on the Edge: Programmed Genome Instability in Ciliates [J].
Bracht, John R. ;
Fang, Wenwen ;
Goldman, Aaron David ;
Dolzhenko, Egor ;
Stein, Elizabeth M. ;
Landweber, Laura F. .
CELL, 2013, 152 (03) :406-416
[10]   Walking a tightrope The complex balancing act of R-loops in genome stability [J].
Brickner, Joshua R. ;
Garzon, Jada L. ;
Cimprich, Karlene A. .
MOLECULAR CELL, 2022, 82 (12) :2267-2297