Analyzing heterogeneity in biomarker discriminative performance through partial time-dependent receiver operating characteristic curve modeling

被引:1
作者
Jiang, Xinyang [1 ]
Li, Wen [2 ]
Wang, Kang [3 ]
Li, Ruosha [1 ]
Ning, Jing [3 ]
机构
[1] Univ Texas Hlth Sci Ctr Houston, Dept Biostat & Data Sci, Houston, TX USA
[2] Univ Texas Hlth Sci Ctr Houston, McGovern Med Sch, Dept Internal Med, Houston, TX USA
[3] Univ Texas MD Anderson Canc Ctr, Dept Biostat, 1400 Pressler St, Houston, TX 77030 USA
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
Alzheimer; discriminative performance; partial AUC; pseudo partial-likelihood; time-dependent AUC; PREDICTIVE ACCURACY; PARTIAL AREA; ROC CURVE; NONPARAMETRIC-ESTIMATION; AUC;
D O I
10.1177/09622802241262521
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
This study investigates the heterogeneity of a biomarker's discriminative performance for predicting subsequent time-to-event outcomes across different patient subgroups. While the area under the curve (AUC) for the time-dependent receiver operating characteristic curve is commonly used to assess biomarker performance, the partial time-dependent AUC (PAUC) provides insights that are often more pertinent for population screening and diagnostic testing. To achieve this objective, we propose a regression model tailored for PAUC and develop two distinct estimation procedures for discrete and continuous covariates, employing a pseudo-partial likelihood method. Simulation studies are conducted to assess the performance of these procedures across various scenarios. We apply our model and inference procedure to the Alzheimer's Disease Neuroimaging Initiative data set to evaluate potential heterogeneities in the discriminative performance of biomarkers for early Alzheimer's disease diagnosis based on patients' characteristics.
引用
收藏
页码:1424 / 1436
页数:13
相关论文
共 28 条
[1]  
Anoop A, 2010, Int J Alzheimers Dis, V2010, DOI 10.4061/2010/606802
[2]  
Cai TX, 2008, STAT SINICA, V18, P817
[3]   Partial AUC estimation and regression [J].
Dodd, LE ;
Pepe, MS .
BIOMETRICS, 2003, 59 (03) :614-623
[4]   CSF biomarkers of Alzheimer's disease concord with amyloid-β PET and predict clinical progression: A study of fully automated immunoassays in BioFINDER and ADNI cohorts [J].
Hansson, Oskar ;
Seibyl, John ;
Stomrud, Erik ;
Zetterberg, Henrik ;
Trojanowski, John Q. ;
Bittner, Tobias ;
Lifke, Valeria ;
Corradini, Veronika ;
Eichenlaub, Udo ;
Batrla, Richard ;
Buck, Katharina ;
Zink, Katharina ;
Rabe, Christina ;
Blennow, Kaj ;
Shaw, Leslie M. .
ALZHEIMERS & DEMENTIA, 2018, 14 (11) :1470-1481
[5]   Survival model predictive accuracy and ROC curves [J].
Heagerty, PJ ;
Zheng, YY .
BIOMETRICS, 2005, 61 (01) :92-105
[6]   Proportional cross-ratio model [J].
Hu, Tianle ;
Nan, Bin ;
Lin, Xihong .
LIFETIME DATA ANALYSIS, 2019, 25 (03) :480-506
[7]  
Huling J., 2019, R PACKAGE VERSION 00, P1
[8]   FUNCTIONAL COVARIATE-ADJUSTED PARTIAL AREA UNDER THE SPECIFICITY-ROC CURVE WITH AN APPLICATION TO METABOLIC SYNDROME DIAGNOSIS [J].
Inacio de Carvalho, Vanda ;
de Carvalho, Miguel ;
Alonzo, Todd A. ;
Gonzalez-Manteiga, Wenceslao .
ANNALS OF APPLIED STATISTICS, 2016, 10 (03) :1472-1495
[9]   Adjusting for covariates in studies of diagnostic, screening, or prognostic markers: An old concept in a new setting [J].
Janes, Holly ;
Pepe, Margaret S. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2008, 168 (01) :89-97
[10]   Time-dependent ROC curve analysis in medical research: current methods and applications [J].
Kamarudin, Adina Najwa ;
Cox, Trevor ;
Kolamunnage-Dona, Ruwanthi .
BMC MEDICAL RESEARCH METHODOLOGY, 2017, 17