Polymorphic Clustering and Approximate Masking Framework for Fine-Grained Insect Image Classification

被引:1
|
作者
Huo, Hua [1 ]
Mei, Aokun [1 ]
Xu, Ningya [1 ]
机构
[1] Henan Univ Sci & Technol, Informat Engn Coll, Luoyang 471000, Peoples R China
基金
中国国家自然科学基金;
关键词
fine-grained image classification; insect classification; model framework; clustering; region masking; IDENTIFICATION; HISTOGRAMS; FEATURES;
D O I
10.3390/electronics13091691
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Insect diversity monitoring is crucial for biological pest control in agriculture and forestry. Modern monitoring of insect species relies heavily on fine-grained image classification models. Fine-grained image classification faces challenges such as small inter-class differences and large intra-class variances, which are even more pronounced in insect scenes where insect species often exhibit significant morphological differences across multiple life stages. To address these challenges, we introduce segmentation and clustering operations into the image classification task and design a novel network model training framework for fine-grained classification of insect images using multi-modality clustering and approximate mask methods, named PCAM-Frame. In the first stage of the framework, we adopt the Polymorphic Clustering Module, and segmentation and clustering operations are employed to distinguish various morphologies of insects at different life stages, allowing the model to differentiate between samples at different life stages during training. The second stage consists of a feature extraction network, called Basenet, which can be any mainstream network that performs well in fine-grained image classification tasks, aiming to provide pre-classification confidence for the next stage. In the third stage, we apply the Approximate Masking Module to mask the common attention regions of the most likely classes and continuously adjust the convergence direction of the model during training using a Deviation Loss function. We apply PCAM-Frame with multiple classification networks as the Basenet in the second stage and conduct extensive experiments on the Insecta dataset of iNaturalist 2017 and IP102 dataset, achieving improvements of 2.2% and 1.4%, respectively. Generalization experiments on other fine-grained image classification datasets such as CUB200-2011 and Stanford Dogs also demonstrate positive effects. These experiments validate the pertinence and effectiveness of our framework PCAM-Frame in fine-grained image classification tasks under complex conditions, particularly in insect scenes.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Framework for user acceptance: Clustering for fine-grained results
    Devolder, Pieter
    Pynoo, Bram
    Sijnave, Bart
    Voet, Tony
    Duyck, Philippe
    INFORMATION & MANAGEMENT, 2012, 49 (05) : 233 - 239
  • [2] Fine-grained image classification of microscopic insect pest species: Western Flower thrips and Plague thrips
    Amarathunga, Don Chathurika
    Ratnayake, Malika Nisal
    Grundy, John
    Dorin, Alan
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 203
  • [3] DEEP DICTIONARY LEARNING FOR FINE-GRAINED IMAGE CLASSIFICATION
    Srinivas, M.
    Lin, Yen-Yu
    Liao, Hong-Yuan Mark
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 835 - 839
  • [4] Feature relocation network for fine-grained image classification
    Zhao, Peng
    Li, Yi
    Tang, Baowei
    Liu, Huiting
    Yao, Sheng
    NEURAL NETWORKS, 2023, 161 : 306 - 317
  • [5] Learning Cascade Attention for fine-grained image classification
    Zhu, Youxiang
    Li, Ruochen
    Yang, Yin
    Ye, Ning
    NEURAL NETWORKS, 2020, 122 : 174 - 182
  • [6] Improving Fine-Grained Image Classification With Multimodal Information
    Xu, Jie
    Zhang, Xiaoqian
    Zhao, Changming
    Geng, Zili
    Feng, Yuren
    Miao, Ke
    Li, Yunji
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 2082 - 2095
  • [7] A Fine-Grained Image Classification Method Built on MobileViT
    Lu, Zhengqiu
    Wang, Haiying
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (06)
  • [8] Robust fine-grained image classification with noisy labels
    Tan, Xinxing
    Dong, Zemin
    Zhao, Hualing
    VISUAL COMPUTER, 2022, 39 (11) : 5637 - 5650
  • [9] Grouping Bilinear Pooling for Fine-Grained Image Classification
    Zeng, Rui
    He, Jingsong
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [10] Aggregate attention module for fine-grained image classification
    Wang, Xingmei
    Shi, Jiahao
    Fujita, Hamido
    Zhao, Yilin
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (7) : 8335 - 8345