Dislocation hyperbolic augmented Lagrangian algorithm in convex programming

被引:2
作者
Ramirez, Lennin Mallma [1 ]
Maculan, Nelson [2 ]
Xavier, Adilson Elias [1 ]
Xavier, Vinicius Layter [3 ]
机构
[1] Univ Fed Rio de Janeiro, Syst Engn & Comp Sci Program COPPE, Rio De Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, Syst Engn & Comp Sci Program Appl Math IM COPPE, Rio De Janeiro, Brazil
[3] Univ Estado Rio De Janeiro, Inst Math & Stat, Grad Program Computat Sci, Rio De Janeiro, Brazil
来源
INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA | 2024年 / 14卷 / 02期
关键词
Augmented Lagrangian; Constrained optimization; Convergence; Convex problem;
D O I
10.11121/ijocta.1402
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dislocation hyperbolic augmented Lagrangian algorithm (DHALA) is a new approach to the hyperbolic augmented Lagrangian algorithm (HALA). DHALA is designed to solve convex nonlinear programming problems. We guarantee that the sequence generated by DHALA converges towards a KarushKuhn-Tucker point. We are going to observe that DHALA has a slight computational advantage in solving the problems over HALA. Finally, we will computationally illustrate our theoretical results.
引用
收藏
页码:147 / 155
页数:9
相关论文
共 20 条
[1]   Interior proximal and multiplier methods based on second order homogeneous kernels [J].
Auslender, A ;
Teboulle, M ;
Ben-Tiba, S .
MATHEMATICS OF OPERATIONS RESEARCH, 1999, 24 (03) :645-668
[2]  
Belloufi M., 2013, An International Journal of Optimization and Control: Theories C Applications (IJOCTA), V3, P145, DOI [10.11121/ijocta.01.2013.00141, DOI 10.11121/IJOCTA.01.2013.00141]
[3]   Worst-case evaluation complexity of a quadratic penalty method for nonconvex optimization [J].
Grapiglia, Geovani Nunes .
OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (04) :781-803
[4]   ITERATIVE DETERMINATION OF PARAMETERS FOR AN EXACT PENALTY FUNCTION [J].
HARTMAN, JK .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1975, 16 (1-2) :49-66
[5]  
Harwell Subroutine Library, 2002, A collection of Fortran codes for large scale scientific computation
[6]  
Hock W., 1981, Lecture Notes in Economics and Mathematical Systems, V187, DOI [10.1007/978-3-642-48320-2, DOI 10.1007/978-3-642-48320-2]
[7]   An example comparing the standard and safeguarded augmented Lagrangian methods [J].
Kanzow, Christian ;
Steck, Daniel .
OPERATIONS RESEARCH LETTERS, 2017, 45 (06) :598-603
[8]   COMBINED PRIMAL-DUAL AND PENALTY METHODS FOR CONVEX PROGRAMMING [J].
KORT, BW ;
BERTSEKAS, DP .
SIAM JOURNAL ON CONTROL, 1976, 14 (02) :268-294
[9]  
Mallma-Ramirez Lennin, 2022, Ph. D. Thesis
[10]   Nonlinear rescaling and proximal-like methods in convex optimization [J].
Polyak, R ;
Teboulle, M .
MATHEMATICAL PROGRAMMING, 1997, 76 (02) :265-284