Optimized noise-assisted simulation of the Lindblad equation with time-dependent coefficients on a noisy quantum processor

被引:5
作者
Guimaraes, Jose D. [1 ,2 ,3 ,4 ]
Ruiz-Molero, Antonio [4 ,5 ]
Lim, James [1 ,2 ]
Vasilevskiy, Mikhail I. [3 ,4 ]
Huelga, Susana F. [1 ,2 ]
Plenio, Martin B. [1 ,2 ]
机构
[1] Ulm Univ, Inst Theoret Phys, Albert Einstein Allee 11, D-89081 Ulm, Germany
[2] Ulm Univ, IQST, Albert Einstein Allee 11, D-89081 Ulm, Germany
[3] Ctr Fis Univ Minho & Porto, P-4710057 Braga, Portugal
[4] Int Iberian Nanotechnol Lab, Ave Mestre Jose Veiga S-M, P-4715330 Braga, Portugal
[5] Univ Minho, Dept Informat, Braga, Portugal
关键词
Digital devices - Open systems - Quantum optics;
D O I
10.1103/PhysRevA.109.052224
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Noise in quantum devices is generally considered detrimental to computational accuracy. However, the recent proposal of noise-assisted simulation has demonstrated that noise can be an asset in digital quantum simulations of open systems on noisy intermediate-scale quantum (NISQ) devices. In this context, we introduce an optimized decoherence rate control scheme that can significantly reduce computational requirements by multiple orders of magnitude, in comparison to the original noise-assisted simulation. We further extend this approach to encompass Lindblad equations with time-dependent coefficients, using only quantum error characterization and mitigation techniques. This extension allows for the perturbative simulation of non-Markovian dynamics on NISQ devices, eliminating the need for ancilla qubits or midcircuit measurements. Our contributions are validated through numerical experiments on an emulated IBM Quantum device. Overall, our paper offers valuable optimizations that bring current quantum processors closer to effectively simulating realistic open systems.
引用
收藏
页数:12
相关论文
共 79 条
[11]   Theory of Trotter Error with Commutator Scaling [J].
Childs, Andrew M. ;
Su, Yuan ;
Tran, Minh C. ;
Wiebe, Nathan ;
Zhu, Shuchen .
PHYSICAL REVIEW X, 2021, 11 (01)
[12]   Toward the first quantum simulation with quantum speedup [J].
Childs, Andrew M. ;
Maslov, Dmitri ;
Nam, Yunseong ;
Ross, Neil J. ;
Su, Yuan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (38) :9456-9461
[13]   The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexes [J].
Chin, A. W. ;
Prior, J. ;
Rosenbach, R. ;
Caycedo-Soler, F. ;
Huelga, S. F. ;
Plenio, M. B. .
NATURE PHYSICS, 2013, 9 (02) :113-118
[14]   Dynamical maps beyond Markovian regime? [J].
Chruscinski, Dariusz .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2022, 992 :1-85
[15]  
Cirio M, 2023, Arxiv, DOI arXiv:2311.15240
[16]  
Cleve R., 2016, arXiv
[17]   Hamiltonian simulation algorithms for near-term quantum hardware [J].
Clinton, Laura ;
Bausch, Johannes ;
Cubitt, Toby .
NATURE COMMUNICATIONS, 2021, 12 (01)
[18]   Practical quantum advantage in quantum simulation [J].
Daley, Andrew J. ;
Bloch, Immanuel ;
Kokail, Christian ;
Flannigan, Stuart ;
Pearson, Natalie ;
Troyer, Matthias ;
Zoller, Peter .
NATURE, 2022, 607 (7920) :667-676
[19]   Practical Quantum Error Mitigation for Near-Future Applications [J].
Endo, Suguru ;
Benjamin, Simon C. ;
Li, Ying .
PHYSICAL REVIEW X, 2018, 8 (03)
[20]   Characterizing large-scale quantum computers via cycle benchmarking [J].
Erhard, Alexander ;
Wallman, Joel J. ;
Postler, Lukas ;
Meth, Michael ;
Stricker, Roman ;
Martinez, Esteban A. ;
Schindler, Philipp ;
Monz, Thomas ;
Emerson, Joseph ;
Blatt, Rainer .
NATURE COMMUNICATIONS, 2019, 10 (1)