Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows

被引:47
作者
Li, Qing [1 ]
Luo, K. H. [2 ]
机构
[1] Univ Southampton, Fac Engn Environm, Energy Technol Res Grp, Southampton SO17 1BJ, Hants, England
[2] UCL, Dept Mech Engn, Torrington Pl, London WC1E 7JE, England
基金
英国工程与自然科学研究理事会;
关键词
SQUARE CAVITY; SIMULATION; EQUATION; LAMINAR;
D O I
10.1103/PhysRevE.89.053022
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The pseudopotential lattice Boltzmann (LB) model is a popular model in the LB community for simulating multiphase flows. Recently, several thermal LB models, which are based on the pseudopotential LB model and constructed within the framework of the double-distribution-function LB method, were proposed to simulate thermal multiphase flows [G. Hazi and A. Markus, Phys. Rev. E 77, 026305 (2008); L. Biferale, P. Perlekar, M. Sbragaglia, and F. Toschi, Phys. Rev. Lett. 108, 104502 (2012); S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012); M. R. Kamali et al., Phys. Rev. E 88, 033302 (2013)]. The objective of the present paper is to show that the effect of the forcing term on the temperature equation must be eliminated in the pseudopotential LB modeling of thermal flows. First, the effect of the forcing term on the temperature equation is shown via the Chapman-Enskog analysis. For comparison, alternative treatments that are free from the forcing-term effect are provided. Subsequently, numerical investigations are performed for two benchmark tests. The numerical results clearly show that the existence of the forcing-term effect will lead to significant numerical errors in the pseudopotential LB modeling of thermal flows.
引用
收藏
页数:7
相关论文
共 37 条
[1]   Lattice-Boltzmann Method for Complex Flows [J].
Aidun, Cyrus K. ;
Clausen, Jonathan R. .
ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 :439-472
[2]   NATURAL-CONVECTION FLOW IN A SQUARE CAVITY REVISITED - LAMINAR AND TURBULENT MODELS WITH WALL FUNCTIONS [J].
BARAKOS, G ;
MITSOULIS, E ;
ASSIMACOPOULOS, D .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1994, 18 (07) :695-719
[3]   THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS [J].
BENZI, R ;
SUCCI, S ;
VERGASSOLA, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03) :145-197
[4]   Convection in Multiphase Fluid Flows Using Lattice Boltzmann Methods [J].
Biferale, L. ;
Perlekar, P. ;
Sbragaglia, M. ;
Toschi, F. .
PHYSICAL REVIEW LETTERS, 2012, 108 (10)
[5]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[6]   Complete Galilean invariant lattice Boltzmann models [J].
Chikatamarla, Shyam S. ;
Karlin, Iliya V. .
COMPUTER PHYSICS COMMUNICATIONS, 2008, 179 (1-3) :140-143
[7]   A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer [J].
Gong, Shuai ;
Cheng, Ping .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (17-18) :4923-4927
[8]   Lattice Boltzmann simulation of thermal nonideal fluids [J].
Gonnella, G. ;
Lamura, A. ;
Sofonea, V. .
PHYSICAL REVIEW E, 2007, 76 (03)
[9]   Discrete lattice effects on the forcing term in the lattice Boltzmann method [J].
Guo, Zhaoli ;
Zheng, Chuguang ;
Shi, Baochang .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (04) :1-046308
[10]   A coupled lattice BGK model for the Boussinesq equations [J].
Guo, ZL ;
Shi, BC ;
Zheng, CG .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 39 (04) :325-342