Deep learning based event reconstruction for cyclotron radiation emission spectroscopy

被引:0
作者
Esfahani, A. Ashtari [1 ,2 ]
Boeser, S. [3 ]
Buzinsky, N. [4 ]
Carmona-Benitez, M. C. [5 ]
Cervantes, R. [1 ,2 ]
Claessens, C. [1 ,2 ]
de Viveiros, L. [5 ]
Fertl, M. [3 ]
Formaggio, J. A. [4 ]
Gaison, J. K. [6 ]
Gladstone, L. [7 ]
Grando, M. [6 ]
Guigue, M. [6 ]
Hartse, J. [1 ,2 ]
Heeger, K. M. [8 ]
Huyan, X. [6 ]
Jones, A. M. [6 ]
Kazkaz, K. [9 ]
Li, M. [4 ]
Lindman, A. [3 ]
Marsteller, A. [1 ,2 ]
Matthe, C. [3 ]
Mohiuddin, R. [7 ]
Monreal, B. [7 ]
Morrison, E. C. [6 ]
Mueller, R. [5 ]
Nikkel, J. A. [8 ]
Novitski, E. [1 ,2 ]
Oblath, N. S. [6 ]
Pena, J., I [4 ]
Pettus, W. [10 ,11 ]
Reimann, R. [3 ]
Robertson, R. G. H. [1 ,2 ]
Saldana, L. [8 ]
Schram, M. [6 ]
Slocum, P. L. [8 ]
Stachurska, J. [4 ]
Sun, Y-H [7 ]
Surukuchi, P. T. [8 ]
Telles, A. B. [8 ]
Thomas, F. [3 ]
Thomas, M. [6 ]
Thorne, L. A. [3 ]
Thuemmler, T. [12 ]
Tvrznikova, L. [9 ]
Van De Pontseele, W. [4 ]
VanDevender, B. A. [1 ,2 ,6 ]
Weiss, T. E. [8 ]
Wendler, T. [5 ]
Zayas, E. [4 ]
机构
[1] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA
[2] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[3] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
[4] MIT, Lab Nucl Sci, Cambridge, MA 02139 USA
[5] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[6] Pacific Northwest Natl Lab, Richland, WA 99354 USA
[7] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA
[8] Yale Univ, Dept Phys, Wright Lab, New Haven, CT 06520 USA
[9] Lawrence Livermore Natl Lab, Nucl & Chem Sci, Livermore, CA 94550 USA
[10] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47405 USA
[11] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA
[12] Karlsruhe Inst Technol, Inst Astroparticle Phys, D-76021 Karlsruhe, Germany
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2024年 / 5卷 / 02期
基金
美国国家科学基金会; 美国能源部;
关键词
neutrino mass; cyclotron radiation; Project; 8; machine learning; deep learning; convolutional neural network; unet;
D O I
10.1088/2632-2153/ad3ee3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The objective of the cyclotron radiation emission spectroscopy (CRES) technology is to build precise particle energy spectra. This is achieved by identifying the start frequencies of charged particle trajectories which, when exposed to an external magnetic field, leave semi-linear profiles (called tracks) in the time-frequency plane. Due to the need for excellent instrumental energy resolution in application, highly efficient and accurate track reconstruction methods are desired. Deep learning convolutional neural networks (CNNs) - particularly suited to deal with information-sparse data and which offer precise foreground localization-may be utilized to extract track properties from measured CRES signals (called events) with relative computational ease. In this work, we develop a novel machine learning based model which operates a CNN and a support vector machine in tandem to perform this reconstruction. A primary application of our method is shown on simulated CRES signals which mimic those of the Project 8 experiment-a novel effort to extract the unknown absolute neutrino mass value from a precise measurement of tritium beta --decay energy spectrum. When compared to a point-clustering based technique used as a baseline, we show a relative gain of 24.1% in event reconstruction efficiency and comparable performance in accuracy of track parameter reconstruction.
引用
收藏
页数:18
相关论文
共 41 条
  • [1] Abadi M., 2015, TENSORFLOW LARGE SCA
  • [2] Arganda-Carreras I., 2012, ISBI CHALLENGE SEGME
  • [3] Aseev VN, 2000, EUR PHYS J D, V10, P39, DOI 10.1007/s100530050525
  • [4] Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation
    Asner, D. M.
    Bradley, R. F.
    de Viveiros, L.
    Doe, P. J.
    Fernandes, J. L.
    Fertl, M.
    Finn, E. C.
    Formaggio, J. A.
    Furse, D.
    Jones, A. M.
    Kofron, J. N.
    LaRoque, B. H.
    Leber, M.
    McBride, E. L.
    Miller, M. L.
    Mohanmurthy, P.
    Monreal, B.
    Oblath, N. S.
    Robertson, R. G. H.
    Rosenberg, L. J.
    Rybka, G.
    Rysewyk, D.
    Sternberg, M. G.
    Tedeschi, J. R.
    Thuemmler, T.
    VanDevender, B. A.
    Woods, N. L.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (16)
  • [5] CNN Variants for Computer Vision: History, Architecture, Application, Challenges and Future Scope
    Bhatt, Dulari
    Patel, Chirag
    Talsania, Hardik
    Patel, Jigar
    Vaghela, Rasmika
    Pandya, Sharnil
    Modi, Kirit
    Ghayvat, Hemant
    [J]. ELECTRONICS, 2021, 10 (20)
  • [6] Boehnlein A., 2021, arXiv
  • [7] Machine and deep learning applications in particle physics
    Bourilkov, Dimitri
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (35):
  • [8] Buzinsky N., 2019, Katydid
  • [9] Byron W, 2022, Arxiv, DOI arXiv:2209.02870
  • [10] Channel-Unet: A Spatial Channel-Wise Convolutional Neural Network for Liver and Tumors Segmentation
    Chen, Yilong
    Wang, Kai
    Liao, Xiangyun
    Qian, Yinling
    Wang, Qiong
    Yuan, Zhiyong
    Heng, Pheng-Ann
    [J]. FRONTIERS IN GENETICS, 2019, 10