Van der Waals engineering toward designer spintronic heterostructures

被引:3
|
作者
Song, Jizhe [1 ]
Chen, Jianing [2 ]
Sun, Mengtao [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
来源
MATERIALS TODAY ELECTRONICS | 2023年 / 6卷
基金
美国国家科学基金会;
关键词
Van der Waals; Engineering; Designer; Spintronic; Heterostructures; FRACTIONAL CHERN INSULATORS; SPIN; GRAPHENE; FERROMAGNETISM; VALLEY; SUPERCONDUCTIVITY; MAGNETORESISTANCE; POLARIZATION; STATE;
D O I
10.1016/j.mtelec.2023.100070
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This perspective explores the emerging field of spintronics within the context of two-dimensional van der Waals (vdW) heterostructures. Spintronics has opened exciting possibilities in the realm of two-dimensional (2D) materials. The integration of diverse 2D materials within vdW heterostructures has unveiled a plethora of previously unknown physical phenomena and potential applications related to spin -dependent transport, gatetunable spin transport, spin filtering effects, and the emergence of ferromagnetism. These advancements have expanded the scope of spintronics beyond traditional bulk materials, offering unique opportunities for efficient spin injection, manipulation, and detection in 2D devices. A deep understanding of how different materials and interfaces are interconnected and how they affect spin properties is essential for improving the effectiveness and control of spin injection and detection. The study of spintronics in vdW heterostructures holds great promise for advancing the frontiers of developing the next generation of spintronic and quantum devices, revolutionizing information technology and nanoelectronics.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Photoresponse of Natural van der Waals Heterostructures
    Ray, Kyle
    Yore, Alexander E.
    Mou, Tong
    Jha, Sauraj
    Smithe, Kirby K. H.
    Wang, Bin
    Pop, Eric
    Newaz, A. K. M.
    ACS NANO, 2017, 11 (06) : 6024 - 6030
  • [22] Moire patterns in van der Waals heterostructures
    Le Ster, Maxime
    Maerk, Tobias
    Kowalczyk, Pawel J.
    Brown, Simon A.
    PHYSICAL REVIEW B, 2019, 99 (07)
  • [23] Ultrafast dynamics in van der Waals heterostructures
    Jin, Chenhao
    Ma, Eric Yue
    Karni, Ouri
    Regan, Emma C.
    Wang, Feng
    Heinz, Tony F.
    NATURE NANOTECHNOLOGY, 2018, 13 (11) : 994 - 1003
  • [24] Thermal response in van der Waals heterostructures
    Gandi, Appala Naidu
    Alshareef, Husam N.
    Schwingenschlogl, Udo
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (03)
  • [25] Multiferroicity in atomic van der Waals heterostructures
    Gong, Cheng
    Kim, Eun Mi
    Wang, Yuan
    Lee, Geunsik
    Zhang, Xiang
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [26] Dielectric Genome of van der Waals Heterostructures
    Andersen, Kirsten
    Latini, Simone
    Thygesen, Kristian S.
    NANO LETTERS, 2015, 15 (07) : 4616 - 4621
  • [27] Mixed-dimensional van der Waals heterostructures: Synthesis, properties, and applications
    Li, Tangxin
    She, Yihong
    Yan, Chang
    Miao, Jinshui
    Jariwala, Deep
    MRS BULLETIN, 2023, 48 (09) : 899 - 904
  • [28] Twistronics and moiré excitonic physics in van der Waals heterostructures
    Li, Siwei
    Wei, Ke
    Liu, Qirui
    Tang, Yuxiang
    Jiang, Tian
    FRONTIERS OF PHYSICS, 2024, 19 (04)
  • [29] Production Methods of Van der Waals Heterostructures Based on Transition Metal Dichalcogenides
    Qi, Haimei
    Wang, Lina
    Sun, Jie
    Long, Yi
    Hu, Peng
    Liu, Fucai
    He, Xuexia
    CRYSTALS, 2018, 8 (01):
  • [30] Superconducting Quantum Interference in Twisted van der Waals Heterostructures
    Farrar, Liam S.
    Nevill, Aimee
    Lim, Zhen Jieh
    Balakrishnan, Geetha
    Dale, Sara
    Bending, Simon J.
    NANO LETTERS, 2021, 21 (16) : 6725 - 6731