Preperiodic points of polynomial dynamical systems over finite fields

被引:1
作者
Andersen, Aaron [1 ]
Garton, Derek [1 ]
机构
[1] Portland State Univ, Fariborz Maseeh Dept Math & Stat, Portland, OR 97201 USA
关键词
Arithmetic dynamics; periodic points; finite fields; Galois theory;
D O I
10.1142/S1793042124501124
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a prime p, positive integers r, n, and a polynomial f with coefficients in F-pr, let W-p,W-r,W-n(f) = f(n) (F-pr) \ f(n+1) (F-pr). As n varies, the W-p,W-r,W-n(f) partition the set of strictly preperiodic points of the dynamical system induced by the action of f on F-pr. In this paper, we compute statistics of strictly preperiodic points of dynamical systems induced by unicritical polynomials over finite fields by obtaining effective upper bounds for the proportion of F-pr lying in a given W-p,W-r,W-n(f). Moreover, when we generalize our definition of W-p,W-r,W-n(f), we obtain both upper and lower bounds for the resulting averages.
引用
收藏
页码:2307 / 2316
页数:10
相关论文
共 6 条
[1]  
Garton, 2023, PERIODIC POINT UNPUB
[2]   PERIODIC POINTS OF POLYNOMIALS OVER FINITE FIELDS [J].
Garton, Derek .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (07) :4849-4871
[3]   ITERATION OF QUADRATIC POLYNOMIALS OVER FINITE FIELDS [J].
Heath-Brown, D. R. .
MATHEMATIKA, 2017, 63 (03) :1041-1059
[4]   ITERATES OF GENERIC POLYNOMIALS AND GENERIC RATIONAL FUNCTIONS [J].
Juul, J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (02) :809-831
[5]   The Image Size of Iterated Rational Maps over Finite Fields [J].
Juul, Jamie .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (05) :3362-3388
[6]   Wreath Products and Proportions of Periodic Points [J].
Juul, Jamie ;
Kurlberg, Par ;
Madhu, Kalyani ;
Tucker, Tom J. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (13) :3944-3969