On the box dimension of recurrent fractal interpolation functions defined with Matkowski contractions

被引:0
|
作者
Attia, Najmeddine [2 ]
Jebali, Hajer [1 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Dept Math, Anal Probabil & Fractals Lab LR18ES17, Monastir 5000, Tunisia
[2] King Faisal Univ, Coll Sci, Dept Math & Stat, POB 400, Al Hasa 31982, Saudi Arabia
关键词
Box dimension; Recurrent Iterated Function System; Matkowski contractions; Rakotch contractions; Recurrent Fractal Interpolation Function; ITERATED FUNCTION SYSTEMS; CONSTRUCTION;
D O I
10.1007/s41478-024-00816-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recurrent iterated function system (RIFS) represents an extension of the usual IFS method and allows the construction of more general sets, which do not have to exhibit the strict self similarity, and, in particular, the construction of recurrent fractal interpolation functions (RFIF). The box dimension of a graph of RFIF was first calculated by Barnsley et al. (Constr Approx 5:3-31, 1989) and, recently, was improved by Ruan et al. using the oscillation technique. In this paper, we construct and investigate a new class of RFIF defined with Matkowski contractions and we give an estimation of the upper bound of the box dimension of graphs of the RFIF.
引用
收藏
页码:3453 / 3474
页数:22
相关论文
共 50 条
  • [41] A Fractal Operator Associated with Bivariate Fractal Interpolation Functions on Rectangular Grids
    Verma, S.
    Viswanathan, P.
    RESULTS IN MATHEMATICS, 2020, 75 (01)
  • [42] Parameter Identification of 1D Recurrent Fractal Interpolation Functions with Applications to Imaging and Signal Processing
    Manousopoulos, Polychronis
    Drakopoulos, Vassileios
    Theoharis, Theoharis
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2011, 40 (02) : 162 - 170
  • [43] Cubic Hermite and Cubic Spline Fractal Interpolation Functions
    Chand, A. K. B.
    Viswanathan, P.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1467 - 1470
  • [44] Smooth fractal surfaces derived from bicubic rational fractal interpolation functions
    Bao, Fangxun
    Yao, Xunxiang
    Sun, Qinghua
    Zhang, Yunfeng
    Zhang, Caiming
    SCIENCE CHINA-INFORMATION SCIENCES, 2018, 61 (09)
  • [45] NEW NONLINEAR RECURRENT HIDDEN VARIABLE FRACTAL INTERPOLATION SURFACES
    Kim, Hyonjin
    Kim, Jinmyong
    Mun, Hakmyong
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (02)
  • [46] Recurrent fractal interpolation for data with generalized tempered stable noise: an application to NIFTY data
    Kumar, Mohit
    Upadhye, Neelesh S.
    Chand, A. K. B.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2025,
  • [47] NONLINEAR RECURRENT HIDDEN VARIABLE FRACTAL INTERPOLATION CURVES WITH FUNCTION VERTICAL SCALING FACTORS
    Kim, Jinmyong
    Mun, Hakmyong
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (06)
  • [48] Approximation properties of bivariate α-fractal functions and dimension results
    Jha, Sangita
    Chand, A. K. B.
    Navascues, M. A.
    Sahu, Abhilash
    APPLICABLE ANALYSIS, 2021, 100 (16) : 3426 - 3444
  • [49] Katugampola Fractional Integral and Fractal Dimension of Bivariate Functions
    S. Verma
    P. Viswanathan
    Results in Mathematics, 2021, 76
  • [50] Katugampola Fractional Integral and Fractal Dimension of Bivariate Functions
    Verma, S.
    Viswanathan, P.
    RESULTS IN MATHEMATICS, 2021, 76 (04)