On the box dimension of recurrent fractal interpolation functions defined with Matkowski contractions

被引:0
|
作者
Attia, Najmeddine [2 ]
Jebali, Hajer [1 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Dept Math, Anal Probabil & Fractals Lab LR18ES17, Monastir 5000, Tunisia
[2] King Faisal Univ, Coll Sci, Dept Math & Stat, POB 400, Al Hasa 31982, Saudi Arabia
关键词
Box dimension; Recurrent Iterated Function System; Matkowski contractions; Rakotch contractions; Recurrent Fractal Interpolation Function; ITERATED FUNCTION SYSTEMS; CONSTRUCTION;
D O I
10.1007/s41478-024-00816-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recurrent iterated function system (RIFS) represents an extension of the usual IFS method and allows the construction of more general sets, which do not have to exhibit the strict self similarity, and, in particular, the construction of recurrent fractal interpolation functions (RFIF). The box dimension of a graph of RFIF was first calculated by Barnsley et al. (Constr Approx 5:3-31, 1989) and, recently, was improved by Ruan et al. using the oscillation technique. In this paper, we construct and investigate a new class of RFIF defined with Matkowski contractions and we give an estimation of the upper bound of the box dimension of graphs of the RFIF.
引用
收藏
页码:3453 / 3474
页数:22
相关论文
共 50 条
  • [21] Fractal Dimension of α-Fractal Functions Without Endpoint Conditions
    Gurubachan
    Chandramouli, V. V. M. S.
    Verma, S.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (03)
  • [22] A note on stability and fractal dimension of bivariate α-fractal functions
    Agrawal, V.
    Som, T.
    Verma, S.
    NUMERICAL ALGORITHMS, 2023, 93 (04) : 1811 - 1833
  • [23] On a Class of Fractal Interpolation Functions
    Qian Xiaoyuan (Inst. of Math. Scis.
    数学研究与评论, 1997, (02) : 46 - 47
  • [24] Vector-valued fractal functions: Fractal dimension and fractional calculus
    Verma, Manuj
    Priyadarshi, Amit
    Verma, Saurabh
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2023, 34 (04): : 830 - 853
  • [25] Fractal interpolation functions with variable parameters and their analytical properties
    Wang, Hong-Yong
    Yu, Jia-Shan
    JOURNAL OF APPROXIMATION THEORY, 2013, 175 : 1 - 18
  • [26] Generalization of Hermite functions by fractal interpolation
    Navascués, MA
    Sebastián, MV
    JOURNAL OF APPROXIMATION THEORY, 2004, 131 (01) : 19 - 29
  • [27] Fractal Analysis of Proteins Based on Box Dimension
    Peng Xin
    Zhang Yuwei
    Qi Wei
    Su Rongxin
    Wu Shaomin
    He Zhimin
    ACTA CHIMICA SINICA, 2010, 68 (11) : 1143 - 1147
  • [28] Box dimension of fractal attractors and their numerical computation
    Freiberg, Uta
    Kohl, Stefan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 95
  • [29] A note on stability and fractal dimension of bivariate α-fractal functions
    V. Agrawal
    T. Som
    S. Verma
    Numerical Algorithms, 2023, 93 : 1811 - 1833
  • [30] Some Results on Recurrent Fractal Interpolation Function
    Al-Shameri, Wadia Faid Hassan
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2020, 12 (08) : 1038 - 1043