On the box dimension of recurrent fractal interpolation functions defined with Matkowski contractions

被引:0
|
作者
Attia, Najmeddine [2 ]
Jebali, Hajer [1 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Dept Math, Anal Probabil & Fractals Lab LR18ES17, Monastir 5000, Tunisia
[2] King Faisal Univ, Coll Sci, Dept Math & Stat, POB 400, Al Hasa 31982, Saudi Arabia
来源
JOURNAL OF ANALYSIS | 2024年 / 32卷 / 06期
关键词
Box dimension; Recurrent Iterated Function System; Matkowski contractions; Rakotch contractions; Recurrent Fractal Interpolation Function; ITERATED FUNCTION SYSTEMS; CONSTRUCTION;
D O I
10.1007/s41478-024-00816-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recurrent iterated function system (RIFS) represents an extension of the usual IFS method and allows the construction of more general sets, which do not have to exhibit the strict self similarity, and, in particular, the construction of recurrent fractal interpolation functions (RFIF). The box dimension of a graph of RFIF was first calculated by Barnsley et al. (Constr Approx 5:3-31, 1989) and, recently, was improved by Ruan et al. using the oscillation technique. In this paper, we construct and investigate a new class of RFIF defined with Matkowski contractions and we give an estimation of the upper bound of the box dimension of graphs of the RFIF.
引用
收藏
页码:3453 / 3474
页数:22
相关论文
共 50 条
  • [1] On the Fractal interpolation functions associated with Matkowski contractions
    Attia, Najmeddine
    Balegh, Mohamed
    Amami, Rim
    Amami, Rimah
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (08): : 4652 - 4668
  • [2] EXISTENCE AND BOX DIMENSION OF GENERAL RECURRENT FRACTAL INTERPOLATION FUNCTIONS
    Ruan, Huo-Jun
    Xiao, Jian-Ci
    Yang, Bing
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 103 (02) : 278 - 290
  • [3] Construction and box dimension of recurrent fractal interpolation surfaces
    Liang, Zhen
    Ruan, Huo-Jun
    JOURNAL OF FRACTAL GEOMETRY, 2021, 8 (03) : 261 - 288
  • [4] Box dimension of generalized affine fractal interpolation functions
    Jiang, Lai
    Ruan, Huo-Jun
    JOURNAL OF FRACTAL GEOMETRY, 2023, 10 (3-4) : 279 - 302
  • [5] ON THE BOX DIMENSION FOR A CLASS OF NONAFFINE FRACTAL INTERPOLATION FUNCTIONS
    L.Dalla
    V.Drakopoulos
    M.Prodromou
    AnalysisinTheoryandApplications, 2003, (03) : 220 - 233
  • [6] CONSTRUCTION OF A WEIGHTED FRACTAL INTERPOLATION SURFACE BASED ON MATKOWSKI CONTRACTIONS
    Zhong, Qian-rui
    Wang, Hong-yong
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (01)
  • [7] On the construction of recurrent fractal interpolation functions using Geraghty contractions
    Attia, Najmeddine
    Jebali, Hajer
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (11): : 6866 - 6880
  • [8] Box dimension and fractional integral of linear fractal interpolation functions
    Ruan, Huo-Jun
    Su, Wei-Yi
    Yao, Kui
    JOURNAL OF APPROXIMATION THEORY, 2009, 161 (01) : 187 - 197
  • [9] EXISTENCE AND BOX DIMENSION OF GENERAL RECURRENT FRACTAL INTERPOLATION FUNCTIONS (vol 103, pg 278, 2021)
    Ruan, Huo-Jun
    Xiao, Jian-Ci
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (01) : 174 - 176
  • [10] Bilinear fractal interpolation and box dimension
    Barnsley, Michael F.
    Massopust, Peter R.
    JOURNAL OF APPROXIMATION THEORY, 2015, 192 : 362 - 378