Deep Learning for Midfacial Fracture Detection in CT Images

被引:2
作者
Warin, Kritsasith [1 ]
Vicharueang, Sothana [2 ]
Jantana, Patcharapon [2 ]
Limprasert, Wasit [2 ,3 ]
Thanathornwong, Bhornsawan [4 ]
Suebnukarn, Siriwan [1 ]
机构
[1] Thammasat Univ, Fac Dent, Bangkok, Thailand
[2] Storemesh, Thailand Sci Pk, Pathum Thani, Thailand
[3] Thammasat Univ, Coll Interdisciplinary Studies, Bangkok, Thailand
[4] Srinakharinwirot Univ, Fac Dent, Bangkok, Thailand
来源
MEDINFO 2023 - THE FUTURE IS ACCESSIBLE | 2024年 / 310卷
关键词
Facial trauma; midfacial fracture; artificial intelligence; deep learning;
D O I
10.3233/SHTI231262
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study deploys the deep learning-based object detection algorithms to detect midfacial fractures in computed tomography (CT) images. The object detection models were created using faster R-CNN and RetinaNet from 2,000 CT images. The best detection model, faster R-CNN, yielded an average precision of 0.79 and an area under the curve (AUC) of 0.80. In conclusion, faster R-CNN model has good potential for detecting midfacial fractures in CT images.
引用
收藏
页码:1497 / 1498
页数:2
相关论文
共 3 条
[1]   Automated fracture screening using an object detection algorithm on whole-body trauma computed tomography [J].
Inoue, Takaki ;
Maki, Satoshi ;
Furuya, Takeo ;
Mikami, Yukio ;
Mizutani, Masaya ;
Takada, Ikko ;
Okimatsu, Sho ;
Yunde, Atsushi ;
Miura, Masataka ;
Shiratani, Yuki ;
Nagashima, Yuki ;
Maruyama, Juntaro ;
Shiga, Yasuhiro ;
Inage, Kazuhide ;
Orita, Sumihisa ;
Eguchi, Yawara ;
Ohtori, Seiji .
SCIENTIFIC REPORTS, 2022, 12 (01)
[2]   Midface Fractures II [J].
Louis, Matthew ;
Agrawal, Nikhil ;
Truong, Tuan A. .
SEMINARS IN PLASTIC SURGERY, 2017, 31 (02) :94-99
[3]   Computer Aided Facial Bone Fracture Diagnosis (CA-FBFD) System Based on Object Detection Model [J].
Moon, Gwiseong ;
Kim, Seola ;
Kim, Woojin ;
Kim, Yoon ;
Jeong, Yeonjin ;
Choi, Hyun-Soo .
IEEE ACCESS, 2022, 10 :79061-79070