Analysis of the use of the supervised machine and deep learning techniques in the detection of financial fraud

被引:0
|
作者
Rodriguez-Tovar, Katherin Lizeth [1 ]
Gutierrez-Portela, Fernando [1 ]
Hernandez-Aros, Ludivia [1 ]
机构
[1] Univ Cooperat Colombia, Bogota, Colombia
来源
TECNOLOGIA EN MARCHA | 2023年 / 36卷 / 0-期
关键词
Financial fraud; Artificial Intelligence (AI); incident factors; accuracy; detection;
D O I
10.18845/tm.v36i8.6927
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the modern world, it is necessary to use techniques, methodologies, and actions in search of the integration of the various advances, tools, and current elements for joint work in solving the problems that affect the finances of organizations, since they make a business dynamic exist, creating economic value. Taking into account the above, this study analyzes the prevention of business fraud, through the use of automatic and deep learning techniques to generate prevention, treatment, and resolution of fraud carried out in financial systems. At the methodological level, information was obtained in databases at the documentary level, with reliable sources and case studies where the effectiveness of the use of the aforementioned techniques in the early detection of business fraud is tested. The results obtained in the documents consulted express that the algorithms that are most effective in preventing these frauds are decision tree, C5.0-SVM, Na & iuml;ve Bayes, and Random Forest, with percentages of 92%, and 83.15%, 80, 4%, and 76.7% respectively. In contrast to deep learning, the literature showed that by making use of neural arithmetic logic units and performing the correct classification of the iNALU and ReLU neurons, the percentage of effectiveness increases greatly. In the final part of this document, results and conclusions are presented and consolidated, all within the framework of the topic addressed, in addition, the information compiled in this document is duly supported by the copyright to whom it corresponds.
引用
收藏
页数:95
相关论文
共 50 条
  • [41] Ad Click Fraud Detection Using Machine Learning and Deep Learning Algorithms
    Alzahrani, Reem A.
    Aljabri, Malak
    Mohammad, Rami A. Mustafa
    IEEE ACCESS, 2025, 13 : 12746 - 12763
  • [42] Online Payment Fraud Detection Model Using Machine Learning Techniques
    Almazroi, Abdulwahab Ali
    Ayub, Nasir
    IEEE ACCESS, 2023, 11 : 137188 - 137203
  • [43] A Review of Credit Card Fraud Detection Using Machine Learning Techniques
    Boutaher, Nadia
    Elomri, Amina
    Abghour, Noreddine
    Moussaid, Khalid
    Rida, Mohamed
    PROCEEDINGS OF 2020 5TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS (CLOUDTECH'20), 2020, : 163 - 167
  • [44] Online Detection of Shill Bidding Fraud Based on Machine Learning Techniques
    Ganguly, Swati
    Sadaoui, Samira
    RECENT TRENDS AND FUTURE TECHNOLOGY IN APPLIED INTELLIGENCE, IEA/AIE 2018, 2018, 10868 : 303 - 314
  • [45] Supervised Machine Learning Techniques for Efficient Network Intrusion Detection
    Aboueata, Nada
    Alrasbi, Sara
    Erbad, Aiman
    Kassler, Andreas
    Bhamare, Deval
    2019 28TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND NETWORKS (ICCCN), 2019,
  • [46] IoT Attacks Detection Using Supervised Machine Learning Techniques
    Aljabri, Malak
    Shaahid, Afrah
    Alnasser, Fatima
    Saleh, Asalah
    Alomari, Dorieh
    Aboulnour, Menna
    Al-Eidarous, Walla
    Althubaity, Areej
    HighTech and Innovation Journal, 2024, 5 (03): : 534 - 550
  • [47] Study on Machine Learning Techniques with Conventional Tools for Payment Fraud Detection
    Vidanelag, Harindu Mudunkotuwa Mudunkotuwe Hitiwadi
    Tasnavijitvong, Treepatchara
    Suwimonsatein, Panit
    Meesad, Phayung
    2019 11TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ICITEE 2019), 2019,
  • [48] Comparative study of supervised machine learning techniques for intrusion detection
    Gharibian, Farnaz
    Ghorbani, Ali A.
    CNSR 2007: PROCEEDINGS OF THE FIFTH ANNUAL CONFERENCE ON COMMUNICATION NETWORKS AND SERVICES RESEARCH, 2007, : 350 - +
  • [49] Evaluation of Supervised Machine Learning Techniques for Dynamic Malware Detection
    Zhao, Hongwei
    Li, Mingzhao
    Wu, Taiqi
    Yang, Fei
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2018, 11 (01) : 1153 - 1169
  • [50] Evaluation of Supervised Machine Learning Techniques for Dynamic Malware Detection
    Hongwei Zhao
    Mingzhao Li
    Taiqi Wu
    Fei Yang
    International Journal of Computational Intelligence Systems, 2018, 11 : 1153 - 1169