Flag-transitive, point-imprimitive symmetric 2-(v, k, λ) designs with k > λ (λ-3) /2

被引:2
作者
Montinaro, Alessandro [1 ]
机构
[1] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, Lecce, Italy
关键词
Symmetric design; Automorphism group; Flag -transitive design; PRIMITIVE PERMUTATION-GROUPS; FINITE LINEAR-SPACES; AUTOMORPHISM-GROUPS; MAXIMAL-SUBGROUPS; CLASSIFICATION; RANK;
D O I
10.1016/j.disc.2024.114070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D = (P, B) be a symmetric 2-(v, k, lambda) design admitting a flag-transitive, point imprimitive automorphism group G that leaves invariant a non-trivial partition Sigma of P. Praeger and Zhou [42] have shown that, there is a constant k(0) such that, for each B is an element of B and Delta is an element of Sigma, the size of |B boolean AND Delta| is either 0 or k(0). In the present paper we show that, if k > lambda (lambda - 3) /2 and k(0) >= 3, D is isomorphic to one of the known flag-transitive, poin-timprimitive symmetric 2-designs with parameters (45, 12, 3) or (96, 20, 4). (c) 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:30
相关论文
共 54 条
[1]   Large subgroups of simple groups [J].
Alavi, Seyed Hassan ;
Burness, Timothy C. .
JOURNAL OF ALGEBRA, 2015, 421 :187-233
[2]  
[Anonymous], 1983, London Mathematical Society Lecture Note Series
[3]   ON THE MAXIMAL-SUBGROUPS OF THE FINITE CLASSICAL-GROUPS [J].
ASCHBACHER, M .
INVENTIONES MATHEMATICAE, 1984, 76 (03) :469-514
[4]   Overgroups of cyclic Sylow subgroups of linear groups [J].
Bamberg, John ;
Penttila, Tim .
COMMUNICATIONS IN ALGEBRA, 2008, 36 (07) :2503-2543
[5]  
Beth T., 1999, DESIGN THEORY
[6]   ON TRIVIAL INTERSECTION OF CYCLIC SYLOW SUBGROUPS [J].
BLAU, HI .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 94 (04) :572-576
[7]  
Bray JN, 2013, LOND MATH S, V407, P1, DOI 10.1017/CBO9781139192576
[8]   Constructing flag-transitive, point-imprimitive designs [J].
Cameron, Peter J. ;
Praeger, Cheryl E. .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 43 (04) :755-769
[9]  
CAMINA AR, 1990, J LOND MATH SOC, V41, P555
[10]  
CONWAY JS, 1985, ALA AGR EXP STA BULL, P1