Cones and ping-pong in three dimensions

被引:0
作者
Frieden, Gabriel [1 ]
Gelinas, Felix [1 ]
Soucy, Etienne [1 ]
机构
[1] Univ Quebec Montreal, Montreal, PQ, Canada
来源
INVOLVE, A JOURNAL OF MATHEMATICS | 2024年 / 17卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
hypergeometric group; free product of groups; ping-pong lemma; MONODROMY;
D O I
10.2140/involve.2024.17.11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the hypergeometric group in GL(3) (C) with parameters alpha = (1/4, 1/2, 3/4) and beta = (0, 0, 0). We give a new proof that this group is isomorphic to the free product Z/4Z * Z/2Z by exhibiting a ping-pong table. Our table is determined by a simplicial cone in R-3, and we prove that this is the unique simplicial cone (up to sign) for which our construction produces a valid ping-pong table.
引用
收藏
页码:11 / 28
页数:22
相关论文
共 15 条
[1]  
[Anonymous], 2021, SAGEMATH SAGE MATH S
[2]   MONODROMY FOR THE HYPERGEOMETRIC FUNCTION NFN-1 [J].
BEUKERS, F ;
HECKMAN, G .
INVENTIONES MATHEMATICAE, 1989, 95 (02) :325-354
[3]   Thin monodromy in Sp(4) [J].
Brav, Christopher ;
Thomas, Hugh .
COMPOSITIO MATHEMATICA, 2014, 150 (03) :333-343
[4]   Monodromy of Picard-Fuchs differential equations for Calabi-Yau threefolds [J].
Chen, Yao-Han ;
Yang, Yian ;
Yui, Noriko ;
Erdenberger, Cord .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 616 :167-203
[5]  
Clausen T., 1828, Crelles Journal, V1828, P89
[6]  
Filip S, 2021, Arxiv, DOI arXiv:2106.09181
[7]   Hyperbolic monodromy groups for the hypergeometric equation and Cartan involutions [J].
Fuchs, Elena ;
Meiri, Chen ;
Sarnak, Peter .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (08) :1617-1671
[8]  
Heckman G., 2015, lecture notes
[9]  
Katz NM, 2009, PROG MATH, V270, P89, DOI 10.1007/978-0-8176-4747-6_4
[10]  
Klein F, 1933, Grundl. Math. Wissen., V39