Coupling of ion-conducting interphase with lithiophilic-solid-oxide-electrolyte interlayer toward fast-charging lithium metal batteries

被引:7
|
作者
Chen, Zongyuan [1 ]
Wang, Shengxian [1 ]
Wei, Fengkun [1 ]
Zhai, Yanfang [1 ]
Hu, Ning [2 ,3 ]
Song, Shufeng [1 ]
机构
[1] Chongqing Univ, Coll Aerosp Engn, Chongqing 400044, Peoples R China
[2] Hebei Univ Technol, State Key Lab Reliabil & Intelligence Elect Equipm, Key Lab Adv Intelligent Protect Equipment Technol, Minist Educ, Tianjin 300401, Peoples R China
[3] Hebei Univ Technol, Sch Mech Engn, Tianjin 300401, Peoples R China
关键词
Interphase; Interlayer; Solid electrolyte; Lithium metal batteries; Fast charging; HIGH-ENERGY; WASTE-WATER; ANODE; LI7LA3ZR2O12; EFFICIENCY; STABILITY; BEHAVIOR; LAYER; ACID;
D O I
10.1016/j.cej.2024.152611
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The uncontrollable dendritic Li growth and limited Coulombic efficiency have long impeded the implementation of fast -charging lithium metal batteries. Contrary to the widely accepted attempt of using a sintering dense ceramic electrolyte to realize dendrite -free deposition, we report a coupling architecture of ion-conductingLi3PO4-Li3N interphase with lithiophilic-solid-oxide-electrolyte interlayer for Li -metal anode using a reactive lithiophilic solid oxide electrolyte (RLSE) rather than dense ceramics. The synergistic interphase and protection layer can facilitate the Li -ion transport and enhance the lithiophilicity. As a result, an ultrahigh Li plating/ stripping current density of 10 mA cm -2 and areal capacity of 10 mAh cm -2 for over 1000 h, and a remarkable Coulombic efficiency of 99.8 % are achieved simultaneously. Moreover, the use of interphase-interlayer synergistic protection enables a stable long-term 3000 -cycling of Li||Li4Ti5O12 cell at 2C rate. More importantly, highcurrent-density (e.g. 1.8 mA cm -2) cycling of Li||LiNi0.8Co0.1Mn0.1O2 batteries with a practical area capacity of 3.6 mAh cm -2 is achieved in both carbonate and quasi -solid electrolytes. This study demonstrates an alternative approach of solid oxide electrolytes to stabilize Li -metal anode and enable fast -charging lithium metal batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Fast-charging of lithium-ion batteries: A review of electrolyte design aspects
    Lei, Sheng
    Zeng, Ziqi
    Cheng, Shijie
    Xie, Jia
    BATTERY ENERGY, 2023, 2 (05):
  • [2] Electrode and Electrolyte Design Strategies Toward Fast-Charging Lithium-Ion Batteries
    Li, Jianwei
    Guo, Changyuan
    Tao, Lijuan
    Meng, Jiashen
    Xu, Xiaoming
    Liu, Fang
    Wang, Xuanpeng
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (49)
  • [3] Challenges and opportunities toward fast-charging of lithium-ion batteries
    Xie, Wenlong
    Liu, Xinhua
    He, Rong
    Li, Yalun
    Gao, Xinlei
    Li, Xinghu
    Peng, Zhaoxia
    Feng, Suwei
    Feng, Xuning
    Yang, Shichun
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [4] Unlocking fast-charging capabilities of lithium-ion batteries through liquid electrolyte engineering
    Song, Chaeeun
    Han, Seung Hee
    Moon, Hyeongyu
    Choi, Nam-Soon
    ECOMAT, 2024, 6 (07)
  • [5] Ordered Lithium-Ion Conductive Interphase with Gradient Desolvation Effects for Fast-Charging Lithium Metal Batteries
    Song, Congying
    Zhao, Jingteng
    Ma, Shaobo
    Li, Guoxing
    ACS ENERGY LETTERS, 2023, 8 (08) : 3404 - 3411
  • [6] Fast-Charging Solid-State Lithium Metal Batteries: A Review
    Zhang, Chang
    Hu, Qilin
    Shen, Yanran
    Liu, Wei
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2022, 3 (06):
  • [7] Fast-Charging High-Specific Lithium Metal Batteries Enabled by Oleophilic Garnet Suspension Electrolyte
    Wang, Shengxian
    Wei, Fengkun
    Polu, Anji Reddy
    Singh, Pramod K.
    Hu, Ning
    Song, Shufeng
    SMALL, 2025, 21 (10)
  • [8] Molecular Engineering toward Robust Solid Electrolyte Interphase for Lithium Metal Batteries
    Sun, Yu
    Li, Jingchang
    Xu, Sheng
    Zhou, Haoshen
    Guo, Shaohua
    ADVANCED MATERIALS, 2024, 36 (14)
  • [9] An Ion-Pumping Interphase on Graphdiyne/Graphite Heterojunction for Fast-Charging Lithium-Ion Batteries
    An, Juan
    Wang, Fan
    Yang, Jia-Yue
    Li, Guoxing
    Li, Yuliang
    CCS CHEMISTRY, 2024, 6 (01): : 110 - 124
  • [10] Unveiling the influences of electrolyte additives on the fast-charging performance of lithium-ion batteries
    Schmidt, Rachel
    Liu, Chen
    Cui, Zehao
    Manthiram, Arumugam
    JOURNAL OF POWER SOURCES, 2025, 627