Use of artificial intelligence in CT image evaluation in stroke patients - current options

被引:0
作者
Trabalkova, Z. [1 ,2 ,3 ,4 ]
Stevik, M. [1 ,2 ]
Sykora, J. [1 ,2 ,3 ,4 ]
Vorcak, M. [1 ,2 ]
Zelenak, K. [1 ,2 ]
机构
[1] Radiol Klin JLF, Martin 03601, Slovakia
[2] UNM, Martin 03601, Slovakia
[3] Radiol Klin LF, Olomouc, Czech Republic
[4] FN Olomouc, Olomouc, Czech Republic
关键词
ischemic stroke; vessel occlusion; artificial intelligence; machine learning; deep learning; DEEP; ACCURACY;
D O I
10.48095/cccsnn202432
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Artificial intelligence and its rapid development represent one of the most important technological advances of the current decade. It affects almost all aspects of life, including medicine. Artificial intelligence is widely applied in neuroradiology, particularly in stroke dia gnosis. The primary purpose of its application in this area is to accelerate the interpretation process, increase diagnostic accuracy, and help to select the treatment strategy. Clinicians involved in the initial management of a stroke patient should be familiar with the technical principles and possible use of artificial intelligence in neuroimaging, and they should know the strengths and weaknesses of the technology. This article briefly presents methods of artificial intelligence used in visual data processing. The main goal of the publication is to present particular automated analyses used in the interpretation of dia gnostic information taken from CT images. CT is the primary choice in stroke dia gnostics for most medical departments. The presented analyses are a calculation of the ASPECT score and detection of a hyperdense artery sign from non -contrast CT scans, identifi cation of large vessel occlusion and collateral score evaluation from CTA, and creation of perfusion maps from CT perfusion.
引用
收藏
页码:32 / 40
页数:9
相关论文
共 60 条
  • [41] Automated Collateral Flow Assessment in Patients with Acute Ischemic Stroke Using Computed Tomography with Artificial Intelligence Algorithms
    Rava, Ryan A.
    Seymour, Samantha E.
    Snyder, Kenneth, V
    Waqas, Muhammad
    Davies, Jason M.
    Levy, Elad, I
    Siddiqui, Adnan H.
    Ionita, Ciprian N.
    [J]. WORLD NEUROSURGERY, 2021, 155 : E748 - E760
  • [42] Automated Large Artery Occlusion Detection in Stroke: A Single-Center Validation Study of an Artificial Intelligence Algorithm
    Rodrigues, Gabriel
    Barreira, Clara M.
    Bouslama, Mehdi
    Haussen, Diogo C.
    Al-Bayati, Alhamza
    Pisani, Leonardo
    Liberato, Bernardo
    Bhatt, Nirav
    Frankel, Michael R.
    Nogueira, Raul G.
    [J]. CEREBROVASCULAR DISEASES, 2022, 51 (02) : 259 - 264
  • [43] Automated detection and segmentation of intracranial hemorrhage suspect hyperdensities in non-contrast-enhanced CT scans of acute stroke patients
    Schmitt, N.
    Mokli, Y.
    Weyland, C. S.
    Gerry, S.
    Herweh, C.
    Ringleb, P. A.
    Nagel, S.
    [J]. EUROPEAN RADIOLOGY, 2022, 32 (04) : 2246 - 2254
  • [44] Diagnostic accuracy of automated occlusion detection in CT angiography using e-CTA
    Seker, Fatih
    Pfaff, Johannes Alex Rolf
    Mokli, Yahia
    Berberich, Anne
    Namias, Rafael
    Gerry, Steven
    Nagel, Simon
    Bendszus, Martin
    Herweh, Christian
    [J]. INTERNATIONAL JOURNAL OF STROKE, 2022, 17 (01) : 77 - 82
  • [45] CT Reconstruction Levels Affect Automated and Reader-Based ASPECTS Ratings in Acute Ischemic Stroke
    Seker, Fatih
    Pfaff, Johannes
    Nagel, Simon
    Vollherbst, Dominik
    Gerry, Stephen
    Moehlenbruch, Markus A.
    Bendszus, Martin
    Herweh, Christian
    [J]. JOURNAL OF NEUROIMAGING, 2019, 29 (01) : 62 - 64
  • [46] Utilization of Artificial Intelligence-based Intracranial Hemorrhage Detection on Emergent Noncontrast CT Images in Clinical Workflow
    Seyam, Muhannad
    Weikert, Thomas
    Sauter, Alexander
    Brehm, Alex
    Psychogios, Marios-Nikos
    Blackham, Kristine A.
    [J]. RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2022, 4 (02)
  • [47] Artificial Intelligence for Large-Vessel Occlusion Stroke: A Systematic Review
    Shlobin, Nathan A.
    Baig, Ammad A.
    Waqas, Muhammad
    Patel, Tatsat R.
    Dossani, Rimal H.
    Wilson, Megan
    Cappuzzo, Justin M.
    Siddiqui, Adnan H.
    Tutino, Vincent M.
    Levy, Elad, I
    [J]. WORLD NEUROSURGERY, 2022, 159 : 207 - +
  • [48] How Machine Learning is Powering Neuroimaging to Improve Brain Health
    Singh, Nalini M.
    Harrod, Jordan B.
    Subramanian, Sandya
    Robinson, Mitchell
    Chang, Ken
    Cetin-Karayumak, Suheyla
    Dalca, Adrian Vasile
    Eickhoff, Simon
    Fox, Michael
    Franke, Loraine
    Golland, Polina
    Haehn, Daniel
    Iglesias, Juan Eugenio
    O'Donnell, Lauren J.
    Ou, Yangming
    Rathi, Yogesh
    Siddiqi, Shan H.
    Sun, Haoqi
    Westover, M. Brandon
    Whitfield-Gabrieli, Susan
    Gollub, Randy L.
    [J]. NEUROINFORMATICS, 2022, 20 (04) : 943 - 964
  • [49] Artificial Intelligence and Acute Stroke Imaging
    Soun, J. E.
    Chow, D. S.
    Nagamine, M.
    Takhtawala, R. S.
    Filippi, C. G.
    Yu, W.
    Chang, P. D.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2021, 42 (01) : 2 - 11
  • [50] Automated ASPECTS in Acute Ischemic Stroke: A Comparative Analysis with CT Perfusion
    Sundaram, V. K.
    Goldstein, J.
    Wheelwright, D.
    Aggarwal, A.
    Pawha, P. S.
    Doshi, A.
    Fifi, J. T.
    De Leacy, R.
    Mocco, J.
    Puig, J.
    Nael, K.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (12) : 2033 - 2038