Use of artificial intelligence in CT image evaluation in stroke patients - current options

被引:0
作者
Trabalkova, Z. [1 ,2 ,3 ,4 ]
Stevik, M. [1 ,2 ]
Sykora, J. [1 ,2 ,3 ,4 ]
Vorcak, M. [1 ,2 ]
Zelenak, K. [1 ,2 ]
机构
[1] Radiol Klin JLF, Martin 03601, Slovakia
[2] UNM, Martin 03601, Slovakia
[3] Radiol Klin LF, Olomouc, Czech Republic
[4] FN Olomouc, Olomouc, Czech Republic
关键词
ischemic stroke; vessel occlusion; artificial intelligence; machine learning; deep learning; DEEP; ACCURACY;
D O I
10.48095/cccsnn202432
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Artificial intelligence and its rapid development represent one of the most important technological advances of the current decade. It affects almost all aspects of life, including medicine. Artificial intelligence is widely applied in neuroradiology, particularly in stroke dia gnosis. The primary purpose of its application in this area is to accelerate the interpretation process, increase diagnostic accuracy, and help to select the treatment strategy. Clinicians involved in the initial management of a stroke patient should be familiar with the technical principles and possible use of artificial intelligence in neuroimaging, and they should know the strengths and weaknesses of the technology. This article briefly presents methods of artificial intelligence used in visual data processing. The main goal of the publication is to present particular automated analyses used in the interpretation of dia gnostic information taken from CT images. CT is the primary choice in stroke dia gnostics for most medical departments. The presented analyses are a calculation of the ASPECT score and detection of a hyperdense artery sign from non -contrast CT scans, identifi cation of large vessel occlusion and collateral score evaluation from CTA, and creation of perfusion maps from CT perfusion.
引用
收藏
页码:32 / 40
页数:9
相关论文
共 60 条
  • [1] Automated Detection of Intracranial Large Vessel Occlusions on Computed Tomography Angiography: A Single Center Experience
    Amukotuwa, Shalini A.
    Straka, Matus
    Smith, Heather
    Chandra, Ronil V.
    Dehkharghani, Seena
    Fischbein, Nancy J.
    Bammer, Roland
    [J]. STROKE, 2019, 50 (10) : 2790 - 2798
  • [2] Barreira C., 2018, J NEUROINTERV SURG, V10, pA101, DOI [DOI 10.1136/NEURINTSURG-2018-SNIS.184, 10.1136/neurintsurg-2018-SNIS.184]
  • [3] Endovascular thrombectomy for acute ischaemic stroke with established large infarct: multicentre, open-label, randomised trial
    Bendszus, Martin
    Fiehler, Jens
    Subtil, Fabien
    Bonekamp, Susanne
    Aamodt, Anne Hege
    Fuentes, Blanca
    Gizewski, Elke R.
    Hill, Michael D.
    Krajina, Antonin
    Pierot, Laurent
    Simonsen, Claus Z.
    Zelenak, Kamil
    Blauenfeldt, Rolf A.
    Cheng, Bastian
    Denis, Angelique
    Deutschmann, Hannes
    Dorn, Franziska
    Flottmann, Fabian
    Gellissen, Susanne
    Gerber, Johannes C.
    Goyal, Mayank
    Haring, Jozef
    Herweh, Christian
    Hopf-Jensen, Silke
    Hua, Vi Tuan
    Jensen, Maerit
    Kastrup, Andreas
    Keil, Christiane Fee
    Klepanec, Andrej
    Kurca, Egon
    Mikkelsen, Ronni
    Moehlenbruch, Markus
    Mueller-Huelsbeck, Stefan
    Muennich, Nico
    Pagano, Paolo
    Papanagiotou, Panagiotis
    Petzold, Gabor C.
    Pham, Mirko
    Puetz, Volker
    Raupach, Jan
    Reimann, Gernot
    Ringleb, Peter Arthur
    Schell, Maximilian
    Schlemm, Eckhard
    Schoenenberger, Silvia
    Tennoe, Bjorn
    Ulfert, Christian
    Valis, Katerina
    Vitkova, Eva
    Vollherbst, Dominik F.
    [J]. LANCET, 2023, 402 (10414) : 1753 - 1763
  • [4] Identification of infarct core and ischemic penumbra using computed tomography perfusion and deep learning
    Bhurwani, Mohammad Mahdi Shiraz
    Boutelier, Timothe
    Davis, Adam
    Gautier, Guillaume
    Swetz, Dennis
    Rava, Ryan A. A.
    Raguenes, Dorian
    Waqas, Muhammad
    Snyder, Kenneth V. V.
    Siddiqui, Adnan H. H.
    Ionita, Ciprian N. N.
    [J]. JOURNAL OF MEDICAL IMAGING, 2023, 10 (01)
  • [5] Artificial Intelligence and Machine Learning in the Diagnosis and Management of Stroke: A Narrative Review of United States Food and Drug Administration-Approved Technologies
    Chandrabhatla, Anirudha S.
    Kuo, Elyse A. A.
    Sokolowski, Jennifer D.
    Kellogg, Ryan T.
    Park, Min
    Mastorakos, Panagiotis
    [J]. JOURNAL OF CLINICAL MEDICINE, 2023, 12 (11)
  • [6] Deep Learning: A Primer for Radiologists
    Chartrand, Gabriel
    Cheng, Phillip M.
    Vorontsov, Eugene
    Drozdzal, Michal
    Turcotte, Simon
    Pal, Christopher J.
    Kadoury, Samuel
    Tang, An
    [J]. RADIOGRAPHICS, 2017, 37 (07) : 2113 - 2131
  • [7] Improving the diagnosis of acute ischemic stroke on non-contrast CT using deep learning: a multicenter study
    Chen, Weidao
    Wu, Jiangfen
    Wei, Ren
    Wu, Shuang
    Xia, Chen
    Wang, Dawei
    Liu, Daliang
    Zheng, Longmei
    Zou, Tianyu
    Li, Ruijiang
    Qi, Xianrong
    Zhang, Xiaotong
    [J]. INSIGHTS INTO IMAGING, 2022, 13 (01)
  • [8] Chung CY, 2019, STROKE, V50
  • [9] In patients with suspected acute stroke, CT perfusion-based cerebral blood flow maps cannot substitute for DWI in measuring the ischemic core
    Copen, William A.
    Yoo, Albert J.
    Rost, Natalia S.
    Morais, Livia T.
    Schaefer, Pamela W.
    Gonzalez, R. Gilberto
    Wu, Ona
    [J]. PLOS ONE, 2017, 12 (11):
  • [10] Automated emergent large vessel occlusion detection by artificial intelligence improves stroke workflow in a hub and spoke stroke system of care
    Elijovich, Lucas
    Dornbos III, David
    Nickele, Christopher
    Alexandrov, Andrei
    Inoa-Acosta, Violiza
    Arthur, Adam S.
    Hoit, Daniel
    [J]. JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2022, 14 (07) : 704 - 708