An Optimal Transport View for Subspace Clustering and Spectral Clustering

被引:0
|
作者
Yan, Yuguang [1 ]
Xu, Zhihao [1 ]
Yang, Canlin [1 ]
Zhang, Jie [2 ]
Cai, Ruichu [1 ,3 ]
Ng, Michael Kwok-Po [4 ]
机构
[1] Guangdong Univ Technol, Sch Comp Sci, Guangzhou, Peoples R China
[2] Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[3] Peng Cheng Lab, Shenzhen, Peoples R China
[4] Hong Kong Baptist Univ, Dept Math, Hong Kong, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering is one of the most fundamental problems in machine learning and data mining, and many algorithms have been proposed in the past decades. Among them, subspace clustering and spectral clustering are the most famous approaches. In this paper, we provide an explanation for subspace clustering and spectral clustering from the perspective of optimal transport. Optimal transport studies how to move samples from one distribution to another distribution with minimal transport cost, and has shown a powerful ability to extract geometric information. By considering a self optimal transport model with only one group of samples, we observe that both subspace clustering and spectral clustering can be explained in the framework of optimal transport, and the optimal transport matrix bridges the spaces of features and spectral embeddings. Inspired by this connection, we propose a spectral optimal transport barycenter model, which learns spectral embeddings by solving a barycenter problem equipped with an optimal transport discrepancy and guidance of data. Based on our proposed model, we take advantage of optimal transport to exploit both feature and metric information involved in data for learning coupled spectral embeddings and affinity matrix in a unified model. We develop an alternating optimization algorithm to solve the resultant problems, and conduct experiments in different settings to evaluate the performance of our proposed methods.
引用
收藏
页码:16281 / 16289
页数:9
相关论文
共 50 条
  • [31] Generalized Multi-View Collaborative Subspace Clustering
    Lan, Mengcheng
    Meng, Min
    Yu, Jun
    Wu, Jigang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (06) : 3561 - 3574
  • [32] Efficient Orthogonal Multi-view Subspace Clustering
    Chen, Man-Sheng
    Wang, Chang-Dong
    Huang, Dong
    Lai, Jian-Huang
    Yu, Philip S.
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 127 - 135
  • [33] Diverse and Common Multi-View Subspace Clustering
    Lu, Zhiqiang
    Wu, Songsong
    Liu, Yurong
    Gao, Guangwei
    Wu, Fei
    PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 878 - 882
  • [34] Feature concatenation multi-view subspace clustering
    Zheng, Qinghai
    Zhu, Jihua
    Li, Zhongyu
    Pang, Shanmin
    Wang, Jun
    Li, Yaochen
    NEUROCOMPUTING, 2020, 379 : 89 - 102
  • [35] Deep Multi-view Sparse Subspace Clustering
    Tang, Xiaoliang
    Tang, Xuan
    Wang, Wanli
    Fang, Li
    Wei, Xian
    PROCEEDINGS OF 2018 VII INTERNATIONAL CONFERENCE ON NETWORK, COMMUNICATION AND COMPUTING (ICNCC 2018), 2018, : 115 - 119
  • [36] Multi-view Subspace Clustering on Topological Manifold
    Huang, Shudong
    Wu, Hongjie
    Ren, Yazhou
    Tsang, Ivor W.
    Xu, Zenglin
    Feng, Wentao
    Lv, Jiancheng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [37] Binary multi-view sparse subspace clustering
    Zhao, Jianxi
    Li, Yang
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (29): : 21751 - 21770
  • [38] Preserving bilateral view structural information for subspace clustering
    Peng, Chong
    Zhang, Jing
    Chen, Yongyong
    Xing, Xin
    Chen, Chenglizhao
    Kang, Zhao
    Guo, Li
    Cheng, Qiang
    KNOWLEDGE-BASED SYSTEMS, 2022, 258
  • [39] Generalized Latent Multi-View Subspace Clustering
    Zhang, Changqing
    Fu, Huazhu
    Hu, Qinghua
    Cao, Xiaochun
    Xie, Yuan
    Tao, Dacheng
    Xu, Dong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (01) : 86 - 99
  • [40] Split Multiplicative Multi-View Subspace Clustering
    Yang, Zhiyong
    Xu, Qianqian
    Zhang, Weigang
    Cao, Xiaochun
    Huang, Qingming
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (10) : 5147 - 5160