A NOVEL REINFORCEMENT LEARNING-INSPIRED TUNICATE SWARM ALGORITHM FOR SOLVING GLOBAL OPTIMIZATION AND ENGINEERING DESIGN PROBLEMS

被引:0
|
作者
Chandran, Vanisree [1 ]
Mohapatra, Prabhujit [1 ]
机构
[1] Vellore Inst Technol, Dept Math, Sch Adv Sci, Vellore 632014, Tamil Nadu, India
关键词
Meta-heuristic algorithms; Q-learning; random opposition based learning; quasi reflection based learning; chaotic maps; engineering design problems; KRILL HERD; DISPATCH; COLONY;
D O I
10.3934/jimo.2024095
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reinforcement learning, specifically Q-learning, has gained a plethora of attention from researchers in recent decades due to its remarkable performance in various applications. This study proposes a novel Reinforcement Learning-inspired Tunicate Swarm Algorithm (RLTSA) that employs a Q-learning approach to enhance the convergence accuracy and local search efficacy of tunicates in TSA while preventing their local optimal entrapment. Firstly, a novel Chaotic Quasi Reflection Based Learning (CQRBL) strategy with ten chaotic maps is proposed to improve convergence reliability. Then, Q-learning is introduced and embedded with TSA by dynamically switching the learning mechanisms of CQRBL and ROBL strategies at different stages for distinct problems. These two strategies in the Q-learning approach significantly improve the efficiency of the proposed algorithm. The performance of RLTSA is evaluated on a set of 33 distinct functions, including the CEC'05 and CEC'19 test functions, as well as four engineering design problems, and its outcomes are statistically and graphically tested against the TSA and seven other eminent meta-heuristics. In addition, statistical tests, notably the Friedman, Wilcoxon rank-sum, and t-tests, have been employed to exemplify the dominance of the RLTSA. The experimental findings disclose that RLTSA outperforms the competing algorithms in the realm of real-world engineering design problems.
引用
收藏
页码:565 / 612
页数:48
相关论文
共 50 条
  • [31] An improved Particle Swarm Optimization for solving constrained engineering design problems
    Torkamani, Ali
    Hadj-Hamou, Khaled
    Bigeon, Jean
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND SYSTEMS MANAGEMENT (IESM'2011): INNOVATIVE APPROACHES AND TECHNOLOGIES FOR NETWORKED MANUFACTURING ENTERPRISES MANAGEMENT, 2011, : 194 - 203
  • [32] Modified Sand Cat Swarm Optimization Algorithm for Solving Constrained Engineering Optimization Problems
    Wu, Di
    Rao, Honghua
    Wen, Changsheng
    Jia, Heming
    Liu, Qingxin
    Abualigah, Laith
    MATHEMATICS, 2022, 10 (22)
  • [33] A Hybrid Co-evolutionary Particle Swarm Optimization Algorithm for Solving Constrained Engineering Design Problems
    Zhou, Yongquan
    Pei, Shengyu
    JOURNAL OF COMPUTERS, 2010, 5 (06) : 965 - 972
  • [34] Adaptive dynamic self-learning grey wolf optimization algorithm for solving global optimization problems and engineering problems
    Zhang Y.
    Cai Y.
    Mathematical Biosciences and Engineering, 2024, 21 (03) : 3910 - 3943
  • [35] The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems
    Shadravan, S.
    Naji, H. R.
    Bardsiri, V. K.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 80 : 20 - 34
  • [36] Hybrid Differential Evolution - Particle Swarm Optimization Algorithm for Solving Global Optimization Problems
    Pant, Millie
    Thangaraj, Radha
    Grosan, Crina
    Abraham, Ajith
    2008 THIRD INTERNATIONAL CONFERENCE ON DIGITAL INFORMATION MANAGEMENT, VOLS 1 AND 2, 2008, : 19 - +
  • [37] Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
    Mirjalili, Seyedali
    Gandomi, Amir H.
    Mirjalili, Seyedeh Zahra
    Saremi, Shahrzad
    Faris, Hossam
    Mirjalili, Seyed Mohammad
    ADVANCES IN ENGINEERING SOFTWARE, 2017, 114 : 163 - 191
  • [38] Improved Salp Swarm Algorithm with Simulated Annealing for Solving Engineering Optimization Problems
    Duan, Qing
    Wang, Lu
    Kang, Hongwei
    Shen, Yong
    Sun, Xingping
    Chen, Qingyi
    SYMMETRY-BASEL, 2021, 13 (06):
  • [39] Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems
    Dehghani, Mohammad
    Trojovsky, Pavel
    FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND, 2023, 8
  • [40] Opposition-based Learning Cooking Algorithm (OLCA) for solving global optimization and engineering problems
    Gopi, S.
    Mohapatra, Prabhujit
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2024, 35 (05):