Statistical methods applied to omics data: predicting response to neoadjuvant therapy in breast cancer

被引:3
作者
Ternes, Nils [1 ,2 ]
Arnedos, Monica [3 ]
Koscielny, Serge [1 ]
Michiels, Stefan [1 ,2 ]
Lanoy, Emilie [1 ]
机构
[1] Gustave Roussy, Serv Biostat & Epidemiol, F-94805 Villejuif, France
[2] Univ Paris 11, Le Kremlin Bicetre, France
[3] Gustave Roussy, Dept Med, F-94805 Villejuif, France
关键词
breast cancer; clinical trial; gene expression; neoadjuvant; GENE-EXPRESSION; AROMATASE INHIBITOR; MOLECULAR SUBTYPES; PATHWAY ANALYSIS; CHEMOTHERAPY; LETROZOLE; TRIAL; SENSITIVITY; PACKAGE; PROLIFERATION;
D O I
10.1097/CCO.0000000000000134
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose of review Omics technologies have become an essential part of clinical trials in oncology to provide a better understanding of molecular mechanisms and to unveil therapeutic targets. Standard statistical methods often fail in the high-dimensional setting. Therefore, an adequate modelling of the omics data is needed in order to identify 'target' genes of interest. Recent findings Several genes or gene signatures have been identified to predict the response to neoadjuvant therapies in breast cancer trials. We first reviewed statistical methods used to identify genes in 13 recent publications. Most of these studies had a small sample size (median: 42 patients) and were nonrandomized. We then focused on some popular methods -especially the so-called penalized methods used by three of the reviewed articles - and on the more recent methods proposed to predict causal estimates from observational data. We finally illustrated these methods in a nonrandomized neoadjuvant phase II trial of letrozole in estrogen receptor-positive breast cancer patients. Summary The review highlighted small sample sizes, few randomized trials and a large panel of statistical methods used in this setting. In our illustrated neoadjuvant example, causal inference methods did not outperform the penalized methods.
引用
收藏
页码:576 / 583
页数:8
相关论文
共 50 条
[1]   Phase II Genomics Study of Ixabepilone as Neoadjuvant Treatment for Breast Cancer [J].
Baselga, Jose ;
Zambetti, Milvia ;
Llombart-Cussac, Antoni ;
Manikhas, Georgy ;
Kubista, Ernst ;
Steger, Guenther G. ;
Makhson, Anatoly ;
Tjulandin, Sergei ;
Ludwig, Heinz ;
Verrill, Mark ;
Ciruelos, Eva ;
Egyhazi, Suzanne ;
Xu, Li-An ;
Zerba, Kim E. ;
Lee, Hyerim ;
Clark, Edwin ;
Galbraith, Susan .
JOURNAL OF CLINICAL ONCOLOGY, 2009, 27 (04) :526-534
[2]   Low residual proliferation after short-term letrozole therapy is an early predictive marker of response in high proliferative ER-positive breast cancer [J].
Bedard, Philippe L. ;
Singhal, Sandeep K. ;
Ignatiadis, Michail ;
Bradbury, Ian ;
Haibe-Kains, Benjamin ;
Desmedt, Christine ;
Loi, Sherene ;
Evans, Dean B. ;
Michiels, Stefan ;
Dixon, J. Michael ;
Miller, William R. ;
Piccart, Martine J. ;
Sotiriou, Christos .
ENDOCRINE-RELATED CANCER, 2011, 18 (06) :721-730
[4]   TP53 status for prediction of sensitivity to taxane versus non-taxane neoadjuvant chemotherapy in breast cancer (EORTC 10994/BIG 1-00): a randomised phase 3 trial [J].
Bonnefoi, Herve ;
Piccart, Martine ;
Bogaerts, Jan ;
Mauriac, Louis ;
Fumoleau, Pierre ;
Brain, Etienne ;
Petit, Thierry ;
Rouanet, Philippe ;
Jassem, Jacek ;
Blot, Emmanuel ;
Zaman, Khalil ;
Cufer, Tanja ;
Lortholary, Alain ;
Lidbrink, Elisabet ;
Andre, Sylvie ;
Litiere, Saskia ;
Dal Lago, Lissandra ;
Becette, Veronique ;
Cameron, David A. ;
Bergh, Jonas ;
Iggo, Richard .
LANCET ONCOLOGY, 2011, 12 (06) :527-539
[5]   Predicting survival from microarray data -: a comparative study [J].
Bovelstad, H. M. ;
Nygard, S. ;
Storvold, H. L. ;
Aldrin, M. ;
Borgan, O. ;
Frigessi, A. ;
Lingjaerde, O. C. .
BIOINFORMATICS, 2007, 23 (16) :2080-2087
[6]   PPAR signaling pathway may be an important predictor of breast cancer response to neoadjuvant chemotherapy [J].
Chen, Y. Z. ;
Xue, J. Y. ;
Chen, C. M. ;
Yang, B. L. ;
Xu, Q. H. ;
Wu, F. ;
Liu, F. ;
Ye, X. ;
Meng, X. ;
Liu, G. Y. ;
Shen, Z. Z. ;
Shao, Z. M. ;
Wu, J. .
CANCER CHEMOTHERAPY AND PHARMACOLOGY, 2012, 70 (05) :637-644
[7]   Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes [J].
Desmedt, Christine ;
Haibe-Kains, Benjamin ;
Wirapati, Pratyaksha ;
Buyse, Marc ;
Larsimont, Denis ;
Bontempi, Gianluca ;
Delorenzi, Mauro ;
Piccart, Martine ;
Sotiriou, Christos .
CLINICAL CANCER RESEARCH, 2008, 14 (16) :5158-5165
[8]   Multifactorial Approach to Predicting Resistance to Anthracyclines [J].
Desmedt, Christine ;
Di Leo, Angelo ;
de Azambuja, Evandro ;
Larsimont, Denis ;
Haibe-Kains, Benjamin ;
Selleslags, Jean ;
Delaloge, Suzette ;
Duhem, Caroline ;
Kains, Jean-Pierre ;
Carly, Birgit ;
Maerevoet, Marie ;
Vindevoghel, Anita ;
Rouas, Ghislane ;
Lallemand, Francoise ;
Durbecq, Virginie ;
Cardoso, Fatima ;
Salgado, Roberto ;
Rovere, Rodrigo ;
Bontempi, Gianluca ;
Michiels, Stefan ;
Buyse, Marc ;
Nogaret, Jean-Marie ;
Qi, Yuan ;
Symmans, Fraser ;
Pusztai, Lajos ;
D'Hondt, Veronique ;
Piccart-Gebhart, Martine ;
Sotiriou, Christos .
JOURNAL OF CLINICAL ONCOLOGY, 2011, 29 (12) :1578-1586
[9]   Biomarker changes during neoadjuvant anastrozole, tamoxifen, or the combination: Influence of hormonal status and HER-2 in breast cancer - A study from the IMPACT trialists [J].
Dowsett, M ;
Ebbs, SR ;
Dixon, JM ;
Skene, A ;
Griffith, C ;
Boeddinghaus, I ;
Salter, J ;
Detre, S ;
Hills, M ;
Ashley, S ;
Francis, S ;
Walsh, G ;
Smith, IE .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (11) :2477-2492
[10]   Molecular Profiling of Aromatase Inhibitor-Treated Postmenopausal Breast Tumors Identifies Immune-Related Correlates of Resistance [J].
Dunbier, Anita K. ;
Ghazoui, Zara ;
Anderson, Helen ;
Salter, Janine ;
Nerurkar, Ashutosh ;
Osin, Peter ;
A'hern, Roger ;
Miller, William R. ;
Smith, Ian E. ;
Dowsett, Mitch .
CLINICAL CANCER RESEARCH, 2013, 19 (10) :2775-2786