Semi-device-independent certification of quantum non-Markovianity using sequential random access codes

被引:1
作者
Roy, Abhinash Kumar [1 ,2 ]
Srivastava, Varun [1 ,2 ]
Mahanti, Soumik [3 ,4 ]
Giarmatzi, Christina [2 ,5 ]
Gilchrist, Alexei [1 ,2 ]
机构
[1] Macquarie Univ, Sch Math & Phys Sci, Sydney, NSW 2109, Australia
[2] ARC Ctr Excellence Engn Quantum Syst, Brisbane, Qld 4072, Australia
[3] SN Bose Natl Ctr Basic Sci, Block JD,Sect 3, Kolkata 700106, India
[4] Indian Inst Sci Educ & Res Kolkata, Mohanpur 741246, W Bengal, India
[5] Univ Technol Sydney, Sch Comp Sci, Sydney, NSW 2007, Australia
关键词
DYNAMICS; ERRORS;
D O I
10.1103/PhysRevA.110.012608
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The characterization of multi-time correlations in open quantum systems is of fundamental importance. In this work, we investigate multi-time processes using the process matrix formalism and show that the presence of a quantum-memory environment acts as a resource in enhancing the communication capacity in sequential prepare-transform-measure quantum random access codes (QRAC). The correlated environment enables a quantum advantage to multiple parties, even with projective measurements. In particular, we show that Markovian and classical-memory processes, i.e., non-Markovian quantum processes with classical feedback from the environment, do not yield a sequential quantum advantage. In contrast, it is possible to achieve an advantage in the presence of a quantum-memory environment. Therefore, this approach allows a semi-device-independent certification of quantum non-Markovianity. As opposed to entanglement-detection criteria which require knowledge of the complete process, this method allows to certify the presence of a quantum-memory environment from the observed measurement statistics. Moreover, quantum memory ameliorates the unambiguous certifiable region of unsharp instruments in a semi-device-independent manner.
引用
收藏
页数:14
相关论文
共 73 条
[1]   Robust certification of unsharp instruments through sequential quantum advantages in a prepare-measure communication game [J].
Abhyoudai, S. S. ;
Mukherjee, Sumit ;
Pan, A. K. .
PHYSICAL REVIEW A, 2023, 107 (01)
[2]   Device-independent security of quantum cryptography against collective attacks [J].
Acin, Antonio ;
Brunner, Nicolas ;
Gisin, Nicolas ;
Massar, Serge ;
Pironio, Stefano ;
Scarani, Valerio .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[3]  
Ambainis A., 1999, Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, P376, DOI 10.1145/301250.301347
[4]  
Ambainis A, 2009, Arxiv, DOI [arXiv:0810.2937, 10.48550/arXiv.0810.2937]
[5]   Experimental Characterization of Unsharp Qubit Observables and Sequential Measurement Incompatibility via Quantum Random Access Codes [J].
Anwer, Hammad ;
Muhammad, Sadiq ;
Cherifi, Walid ;
Miklin, Nikolai ;
Tavakoli, Armin ;
Bourennane, Mohamed .
PHYSICAL REVIEW LETTERS, 2020, 125 (08)
[6]   Witnessing causal nonseparability [J].
Araujo, Mateus ;
Branciard, Cyril ;
Costa, Fabio ;
Feix, Adrien ;
Giarmatzi, Christina ;
Brukner, Caslav .
NEW JOURNAL OF PHYSICS, 2015, 17
[7]  
Bell J. S., 1964, Physics, V1, P195, DOI DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195
[8]   Structural features of non-Markovian open quantum systems using quantum chains [J].
Bodor, Andras ;
Diosi, Lajos ;
Kallus, Zsofia ;
Konrad, Thomas .
PHYSICAL REVIEW A, 2013, 87 (05)
[9]   EFFECT OF MARKOV AND NON-MARKOV CLASSICAL NOISE ON ENTANGLEMENT DYNAMICS [J].
Bordone, Paolo ;
Buscemi, Fabrizio ;
Benedetti, Claudia .
FLUCTUATION AND NOISE LETTERS, 2012, 11 (03)
[10]   Certifying the Dimension of Classical and Quantum Systems in a Prepare-and-Measure Scenario with Independent Devices [J].
Bowles, Joseph ;
Quintino, Marco Tulio ;
Brunner, Nicolas .
PHYSICAL REVIEW LETTERS, 2014, 112 (14)