ON SOME NEW AND GENERAL q-HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS

被引:0
作者
Abdullah, Zoya [1 ]
Yousaf, Awais [2 ]
Promsakon, Chanon [3 ]
Sitthiwirattham, Thanin [4 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Sahiwal Campus, Islamabad, Pakistan
[2] Islamia Univ Bahawalpur, Dept Math, Bahawalpur, Pakistan
[3] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Bangkok 10800, Thailand
[4] Suan Dusit Univ, Fac Sci & Technol, Math Dept, Bangkok, Thailand
关键词
Hermite-Hadamard inequality; midpoint inequalities; trapezoid inequalities; convex functions; MIDPOINT TYPE INEQUALITIES; DIFFERENTIABLE MAPPINGS; REAL NUMBERS;
D O I
10.18514/MMN.2024.4300
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish a new version of Hermite-Hadamard type inequality for convex functions. Moreover, we establish a general version of q -integral identity involving qdifferentiable functions to prove some new q -midpoint and q -trapezoidal type inequalities for q -differentiable convex functions. It is also shown that the newly established inequalities can be converted into some existing inequalities within the literature. Finally, we add some mathematical examples to show the validation of newly established inequalities.
引用
收藏
页码:21 / 34
页数:14
相关论文
共 17 条
[1]   A new version of q-Hermite-Hadamard's midpoint and trapezoid type inequalities for convex functions [J].
Ali, Muhammad Aamir ;
Budak, Huseyin ;
Feckan, Michal ;
Khan, Sundas .
MATHEMATICA SLOVACA, 2023, 73 (02) :369-386
[2]   Some new Simpson's type inequalities for coordinated convex functions in quantum calculus [J].
Ali, Muhammad Aamir ;
Budak, Huseyin ;
Zhang, Zhiyue ;
Yildirim, Huseyin .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) :4515-4540
[3]   q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions [J].
Alp, Necmettin ;
Sarikaya, Mehmet Zeki ;
Kunt, Mehmet ;
Iscan, Imdat .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2018, 30 (02) :193-203
[4]   On q-Hermite-Hadamard inequalities for general convex functions [J].
Bermudo, S. ;
Korus, P. ;
Napoles Valdes, J. E. .
ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) :364-374
[5]  
Budak Hüseyin, 2021, Proyecciones (Antofagasta), V40, P199, DOI 10.22199/issn.0717-6279-2021-01-0013
[6]   Simpson and Newton type inequalities for convex functions via newly defined quantum integrals [J].
Budak, Huseyin ;
Erden, Samet ;
Ali, Muhammad Aamir .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) :378-390
[7]  
CHEUNG P., 2002, Quantum calculus
[8]   Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula [J].
Dragomir, SS ;
Agarwal, RP .
APPLIED MATHEMATICS LETTERS, 1998, 11 (05) :91-95
[9]  
Gauchman H, 2004, COMPUT MATH APPL, V47, P281, DOI 10.1016/S0898-1221(04)00012-4
[10]   Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula [J].
Kirmaci, US .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 147 (01) :137-146