Faithful geometric measures for genuine tripartite entanglement

被引:2
|
作者
Ge, Xiaozhen [1 ,2 ]
Liu, Lijun [3 ]
Wang, Yong [1 ]
Xiang, Yu [4 ,5 ]
Zhang, Guofeng [2 ]
Li, Li [1 ]
Cheng, Shuming [1 ,6 ,7 ]
机构
[1] Tongji Univ, Dept Control Sci & Engn, Shanghai 201804, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong 999077, Peoples R China
[3] Shanxi Normal Univ, Dept Math & Comp Sci, Taiyuan 030006, Peoples R China
[4] Peking Univ, Frontiers Sci Ctr Nanooptoelectron, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[5] Peking Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[6] Tongji Univ, Shanghai Inst Intelligent Sci & Technol, Shanghai 201804, Peoples R China
[7] Tongji Univ, Inst Adv Study, Shanghai 200092, Peoples R China
关键词
QUANTUM; ENTROPY; STATE;
D O I
10.1103/PhysRevA.110.L010402
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a faithful geometric picture for genuine tripartite entanglement of discrete, continuous, and hybrid quantum systems. We first find that the triangle relation epsilon(alpha)(i|jk) <= epsilon(alpha)(j|ik) + epsilon(alpha)(k|ij) holds for all subadditive bipartite entanglement measure epsilon, all permutations under parties i, j, k, all a. [0, 1], and all pure tripartite states. Then, we rigorously prove that the nonobtuse triangle area, enclosed by side epsilon(alpha) with 0 < alpha <= 1/2, is a measure for genuine tripartite entanglement. Finally, it is significantly strengthened for qubits that given a set of subadditive and nonsubadditive measures, some state is always found to violate the triangle relation for any alpha > 1, and the triangle area is not a measure for any alpha > 1/2. Our results pave the way to study discrete and continuous multipartite entanglement within a unified framework.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Genuine Tripartite Entanglement as a Probe of Quantum Phase Transitions in a Spin-1 Heisenberg Chain with Single-Ion Anisotropy
    Kam, Chon-Fai
    Chen, Yang
    ANNALEN DER PHYSIK, 2022, 534 (04)
  • [32] Tripartite Quantum Entanglement with Squeezed Optomechanics
    Jiao, Ya-Feng
    Zuo, Yun-Lan
    Wang, Yan
    Lu, Wangjun
    Liao, Jie-Qiao
    Kuang, Le-Man
    Jing, Hui
    LASER & PHOTONICS REVIEWS, 2024, 18 (12)
  • [33] Gaussian tripartite entanglement out of equilibrium
    Valido, Antonio A.
    Correa, Luis A.
    Alonso, Daniel
    PHYSICAL REVIEW A, 2013, 88 (01)
  • [34] Examining the dimensionality of genuine multipartite entanglement
    Spengler, Christoph
    Huber, Marcus
    Gabriel, Andreas
    Hiesmayr, Beatrix C.
    QUANTUM INFORMATION PROCESSING, 2013, 12 (01) : 269 - 278
  • [35] Detecting the dimensionality of genuine multiparticle entanglement
    Cobucci, Gabriele
    Tavakoli, Armin
    SCIENCE ADVANCES, 2024, 10 (38):
  • [36] Tripartite entanglement measure under local operations and classical communication
    Ge, Xiaozhen
    Liu, Lijun
    Cheng, Shuming
    PHYSICAL REVIEW A, 2023, 107 (03)
  • [37] Tetrahedron genuine entanglement measure of four-qubit systems
    Guo, Meng-Li
    Jin, Zhi-Xiang
    Li, Bo
    Fei, Shao-Ming
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (31)
  • [38] Geometric entanglement in topologically ordered states
    Orus, Roman
    Wei, Tzu-Chieh
    Buerschaper, Oliver
    Van den Nest, Maarten
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [39] Characterizing entanglement with geometric entanglement witnesses
    Krammer, Philipp
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (06)
  • [40] Guaranteed emergence of genuine entanglement in 3-qubit evolving systems
    Valdes-Hernandez, Andrea
    Brauer, Vctor H. T.
    Santiago Zamora, F.
    EUROPEAN PHYSICAL JOURNAL D, 2019, 73 (11)