Faithful geometric measures for genuine tripartite entanglement

被引:2
|
作者
Ge, Xiaozhen [1 ,2 ]
Liu, Lijun [3 ]
Wang, Yong [1 ]
Xiang, Yu [4 ,5 ]
Zhang, Guofeng [2 ]
Li, Li [1 ]
Cheng, Shuming [1 ,6 ,7 ]
机构
[1] Tongji Univ, Dept Control Sci & Engn, Shanghai 201804, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong 999077, Peoples R China
[3] Shanxi Normal Univ, Dept Math & Comp Sci, Taiyuan 030006, Peoples R China
[4] Peking Univ, Frontiers Sci Ctr Nanooptoelectron, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[5] Peking Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[6] Tongji Univ, Shanghai Inst Intelligent Sci & Technol, Shanghai 201804, Peoples R China
[7] Tongji Univ, Inst Adv Study, Shanghai 200092, Peoples R China
关键词
QUANTUM; ENTROPY; STATE;
D O I
10.1103/PhysRevA.110.L010402
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a faithful geometric picture for genuine tripartite entanglement of discrete, continuous, and hybrid quantum systems. We first find that the triangle relation epsilon(alpha)(i|jk) <= epsilon(alpha)(j|ik) + epsilon(alpha)(k|ij) holds for all subadditive bipartite entanglement measure epsilon, all permutations under parties i, j, k, all a. [0, 1], and all pure tripartite states. Then, we rigorously prove that the nonobtuse triangle area, enclosed by side epsilon(alpha) with 0 < alpha <= 1/2, is a measure for genuine tripartite entanglement. Finally, it is significantly strengthened for qubits that given a set of subadditive and nonsubadditive measures, some state is always found to violate the triangle relation for any alpha > 1, and the triangle area is not a measure for any alpha > 1/2. Our results pave the way to study discrete and continuous multipartite entanglement within a unified framework.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Genuine multipartite entanglement measures based on multi-party teleportation capability
    Choi, Minjin
    Bae, Eunok
    Lee, Soojoon
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [22] Genuine tripartite non-Gaussian entanglement generated by triple-photon parametric down-conversion
    Ma, Shuangquan
    Zhang, Dayang
    Zhao, Yu
    Yu, Youbin
    Jin, Guangri
    Chen, Aixi
    PHYSICS LETTERS A, 2025, 532
  • [23] Heuristic for estimation of multiqubit genuine multipartite entanglement
    Mendonca, Paulo E. M. F.
    Marchiolli, Marcelo A.
    Milburn, Gerard J.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2015, 13 (03)
  • [24] Triangle Measure of Tripartite Entanglement
    Xie, Songbo
    Eberly, Joseph H.
    PHYSICAL REVIEW LETTERS, 2021, 127 (04)
  • [25] Genuine multipartite entanglement in time
    Milz, Simon
    Spee, Cornelia
    Xu, Zhen-Peng
    Pollock, Felix
    Modi, Kavan
    Guhne, Otfried
    SCIPOST PHYSICS, 2021, 10 (06):
  • [26] Separability and entanglement in tripartite states
    Luo, Shunlong
    Sun, Wei
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 160 (03) : 1316 - 1323
  • [27] Purification of genuine multipartite entanglement
    Huber, Marcus
    Plesch, Martin
    PHYSICAL REVIEW A, 2011, 83 (06):
  • [28] Measure of genuine multipartite entanglement with computable lower bounds
    Ma, Zhi-Hao
    Chen, Zhi-Hua
    Chen, Jing-Ling
    Spengler, Christoph
    Gabriel, Andreas
    Huber, Marcus
    PHYSICAL REVIEW A, 2011, 83 (06):
  • [29] Tripartite entanglement of electron spins of noninteracting electron gases
    Ma, Xiao San
    Qiao, Ying
    Zhao, Guang Xing
    Wang, An Min
    QUANTUM INFORMATION PROCESSING, 2013, 12 (04) : 1807 - 1818
  • [30] Parameterized Bipartite Entanglement Measures and Entanglement Constraints
    Zhou, Wen
    Shen, Zhong-Xi
    Xuan, Dong-Ping
    Wang, Zhi-Xi
    Fei, Shao-Ming
    ADVANCED QUANTUM TECHNOLOGIES, 2025,