Faithful geometric measures for genuine tripartite entanglement

被引:2
|
作者
Ge, Xiaozhen [1 ,2 ]
Liu, Lijun [3 ]
Wang, Yong [1 ]
Xiang, Yu [4 ,5 ]
Zhang, Guofeng [2 ]
Li, Li [1 ]
Cheng, Shuming [1 ,6 ,7 ]
机构
[1] Tongji Univ, Dept Control Sci & Engn, Shanghai 201804, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong 999077, Peoples R China
[3] Shanxi Normal Univ, Dept Math & Comp Sci, Taiyuan 030006, Peoples R China
[4] Peking Univ, Frontiers Sci Ctr Nanooptoelectron, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[5] Peking Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[6] Tongji Univ, Shanghai Inst Intelligent Sci & Technol, Shanghai 201804, Peoples R China
[7] Tongji Univ, Inst Adv Study, Shanghai 200092, Peoples R China
关键词
QUANTUM; ENTROPY; STATE;
D O I
10.1103/PhysRevA.110.L010402
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a faithful geometric picture for genuine tripartite entanglement of discrete, continuous, and hybrid quantum systems. We first find that the triangle relation epsilon(alpha)(i|jk) <= epsilon(alpha)(j|ik) + epsilon(alpha)(k|ij) holds for all subadditive bipartite entanglement measure epsilon, all permutations under parties i, j, k, all a. [0, 1], and all pure tripartite states. Then, we rigorously prove that the nonobtuse triangle area, enclosed by side epsilon(alpha) with 0 < alpha <= 1/2, is a measure for genuine tripartite entanglement. Finally, it is significantly strengthened for qubits that given a set of subadditive and nonsubadditive measures, some state is always found to violate the triangle relation for any alpha > 1, and the triangle area is not a measure for any alpha > 1/2. Our results pave the way to study discrete and continuous multipartite entanglement within a unified framework.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] On genuine entanglement for tripartite systems
    Zhao, Hui
    Liu, Lin
    Wang, Zhi-Xi
    Jing, Naihuan
    Li, Jing
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2022, 20 (02)
  • [2] Genuine tripartite entanglement in the dynamical Casimir coupled waveguides
    Zhao, Shiqing
    Long, Yumei
    Zhang, Mengxin
    Zheng, Taiyu
    Zhang, Xue
    QUANTUM INFORMATION PROCESSING, 2021, 20 (09)
  • [3] Minimal control power of controlled dense coding and genuine tripartite entanglement
    Oh, Changhun
    Kim, Hoyong
    Jeong, Kabgyun
    Jeong, Hyunseok
    SCIENTIFIC REPORTS, 2017, 7
  • [4] Direct measure of genuine tripartite entanglement independent from bipartite constructions
    Ziane, Mustapha
    El Baz, Morad
    QUANTUM INFORMATION PROCESSING, 2018, 17 (08)
  • [5] Detection of genuine tripartite entanglement by multiple sequential observers
    Maity, Ananda G.
    Das, Debarshi
    Ghosal, Arkaprabha
    Roy, Arup
    Majumdar, A. S.
    PHYSICAL REVIEW A, 2020, 101 (04)
  • [6] An improved lower bound of genuine tripartite entanglement concurrence
    Wang, Jing
    Zhu, Xuena
    Li, Ming
    Shen, Shuqian
    Fei, Shao-Ming
    LASER PHYSICS LETTERS, 2021, 18 (12)
  • [7] Should Entanglement Measures be Monogamous or Faithful?
    Lancien, Cecilia
    Di Martino, Sara
    Huber, Marcus
    Piani, Marco
    Adesso, Gerardo
    Winter, Andreas
    PHYSICAL REVIEW LETTERS, 2016, 117 (06)
  • [8] Geometric genuine N-partite entanglement measure for arbitrary dimensions
    Zhao, Hui
    Ma, Pan-Wen
    Fei, Shao-Ming
    Wang, Zhi-Xi
    QUANTUM INFORMATION PROCESSING, 2024, 23 (09)
  • [9] Sharing Genuine Entanglement of Generalized Tripartite States by Multiple Sequential Observers
    Xiao, Yao
    Guo, Fenzhuo
    Dong, Haifeng
    Wen, Qiaoyan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (01)
  • [10] Generation of genuine tripartite entanglement for continuous variables in de Sitter space
    Wang, Jieci
    Wen, Cuihong
    Chen, Songbai
    Jing, Jiliang
    PHYSICS LETTERS B, 2020, 800