Upper bounds for the diameter of a direct power of non-abelian solvable groups

被引:0
作者
Azad, Azizollah [1 ]
Karimi, Nasim [2 ]
机构
[1] Arak Univ, Fac Sci, Dept Math, Arak 3815688349, Iran
[2] Univ Estado Rio de Janeiro, Inst Matemat & Estat, Rio De Janeiro, Brazil
来源
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES | 2024年 / 18卷 / 02期
关键词
Diameter of a finite group; Solvable groups;
D O I
10.1007/s40863-024-00440-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider G as a finite group with a generating set A. We define the (symmetric) diameter of G with respect to A as the maximum length of the shortest word in (A boolean OR A-1)A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A \cup A<^>{-1}) A$$\end{document} expressing g, where g ranges over all elements in G. The (symmetric) diameter of G is then the maximum (symmetric) diameter over all possible generating sets of G. We use Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G<^>n$$\end{document} to denote the n-th direct power of G. For any finite non-abelian solvable group G and n >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1$$\end{document}, we establish an upper bound for both the symmetric diameter and the diameter of Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G<^>n$$\end{document}. This upper bound grows polynomially with respect to n.
引用
收藏
页码:1731 / 1740
页数:10
相关论文
共 16 条
  • [1] BABAI L, 1990, ANN IEEE SYMP FOUND, P857
  • [2] ON THE DIAMETER OF CAYLEY-GRAPHS OF THE SYMMETRIC GROUP
    BABAI, L
    SERESS, A
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1988, 49 (01) : 175 - 179
  • [3] ON THE DIAMETER OF PERMUTATION-GROUPS
    BABAI, L
    SERESS, A
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1992, 13 (04) : 231 - 243
  • [4] On the diameter of Eulerian orientations of graphs
    Babai, Laszlo
    [J]. PROCEEDINGS OF THE SEVENTHEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2006, : 822 - 831
  • [5] Bounds on the diameter of Cayley graphs of the symmetric group
    Bamberg, John
    Gill, Nick
    Hayes, Thomas P.
    Helfgott, Harald A.
    Seress, Akos
    Spiga, Pablo
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 40 (01) : 1 - 22
  • [6] The diameter of products of finite simple groups
    Dona, Daniele
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2022, 22 (04)
  • [7] Hall M., 1976, THEORY GROUPS
  • [8] Helfgott H.A., 2019, Growth in linear algebraic groups and permutation groups: towards a unified perspective, Groups St Andrews 2017 in Birmingham, V455, P300
  • [9] Random generators of the symmetric group: Diameter, mixing time and spectral gap
    Helfgott, Harald A.
    Seress, Akos
    Zuk, Andrzej
    [J]. JOURNAL OF ALGEBRA, 2015, 421 : 349 - 368
  • [10] On the diameter of permutation groups
    Helfgott, Harald A.
    Seress, Akos
    [J]. ANNALS OF MATHEMATICS, 2014, 179 (02) : 611 - 658