A growth chart of brain function from infancy to adolescence based on EEG

被引:1
作者
Iyer, Kartik K. [1 ,2 ]
Roberts, James A. [1 ]
Waak, Michaela [2 ,3 ]
Vogrin, Simon J. [4 ]
Kevat, Ajay [2 ,3 ]
Chawla, Jasneek [2 ,3 ]
Haataja, Leena M. [5 ,6 ,7 ]
Lauronen, Leena [5 ,6 ,7 ]
Vanhatalo, Sampsa [5 ,6 ,7 ]
Stevenson, Nathan J. [1 ]
机构
[1] QIMR Berghofer Med Res Inst, Brain Modelling Grp, Brisbane, Qld, Australia
[2] Univ Queensland, Fac Med, Brisbane, Australia
[3] Queensland Childrens Hosp, Brisbane, Australia
[4] St Vincents Hosp, Melbourne, Australia
[5] Helsinki Univ Hosp, Childrens Hosp, Dept Physiol, Helsinki, Finland
[6] Helsinki Univ Hosp, Childrens Hosp, BABA Ctr, Paediat Res Ctr, Helsinki, Finland
[7] Univ Helsinki, Helsinki, Finland
来源
EBIOMEDICINE | 2024年 / 102卷
基金
英国医学研究理事会;
关键词
Paediatric; Brain function; Brain age; EEG; Machine learning; Neurodevelopment; CORTICAL ACTIVITY; SLEEP; AGE; MATURATION; CHILDHOOD; CHILDREN; LIFE; ELECTROENCEPHALOGRAM;
D O I
10.1016/j.ebiom.2024.105061
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background In children, objective, quantitative tools that determine functional neurodevelopment are scarce and rarely scalable for clinical use. Direct recordings of cortical activity using routinely acquired electroencephalography (EEG) offer reliable measures of brain function. Methods We developed and validated a measure of functional brain age (FBA) using a residual neural network -based interpretation of the paediatric EEG. In this cross-sectional study, we included 1056 children with typical development ranging in age from 1 month to 18 years. We analysed a 10- to 15 -min segment of 18 -channel EEG recorded during light sleep (N1 and N2 states). Findings The FBA had a weighted mean absolute error (wMAE) of 0.85 years (95% CI: 0.69-1.02; n =1056). A twochannel version of the FBA had a wMAE of 1.51 years (95% CI: 1.30-1.73; n = 1056) and was validated on an independent set of EEG recordings (wMAE = 2.27 years, 95% CI: 1.90-2.65; n = 723). Group -level maturational delays were also detected in a small cohort of children with Trisomy 21 (Cohen's d = 0.36, p = 0.028). Interpretation A FBA, based on EEG, is an accurate, practical and scalable automated tool to track brain function maturation throughout childhood with accuracy comparable to widely used physical growth charts.
引用
收藏
页数:16
相关论文
共 71 条
  • [1] Predicting Age From Brain EEG Signals-A Machine Learning Approach
    Al Zoubi, Obada
    Wong, Chung Ki
    Kuplicki, Rayus T.
    Yeh, Hung-wen
    Mayeli, Ahmad
    Refai, Hazem
    Paulus, Martin
    Bodurka, Jerzy
    [J]. FRONTIERS IN AGING NEUROSCIENCE, 2018, 10
  • [2] An open resource for transdiagnostic research in pediatric mental health and learning disorders
    Alexander, Lindsay M.
    Escalera, Jasmine
    Ai, Lei
    Andreotti, Charissa
    Febre, Karina
    Mangone, Alexander
    Vega-Potler, Natan
    Langer, Nicolas
    Alexander, Alexis
    Kovacs, Meagan
    Litke, Shannon
    O'Hagan, Bridget
    Andersen, Jennifer
    Bronstein, Batya
    Bui, Anastasia
    Bushey, Marijayne
    Butler, Henry
    Castagna, Victoria
    Camacho, Nicolas
    Chan, Elisha
    Citera, Danielle
    Clucas, Jon
    Cohen, Samantha
    Dufek, Sarah
    Eaves, Megan
    Fradera, Brian
    Gardner, Judith
    Grant-Villegas, Natalie
    Green, Gabriella
    Gregory, Camille
    Hart, Emily
    Harris, Shana
    Horton, Megan
    Kahn, Danielle
    Kabotyanski, Katherine
    Karmel, Bernard
    Kelly, Simon P.
    Kleinman, Kayla
    Koo, Bonhwang
    Kramer, Eliza
    Lennon, Elizabeth
    Lord, Catherine
    Mantello, Ginny
    Margolis, Amy
    Merikangas, Kathleen R.
    Milham, Judith
    Minniti, Giuseppe
    Neuhaus, Rebecca
    Levine, Alexandra
    Osman, Yael
    [J]. SCIENTIFIC DATA, 2017, 4
  • [3] Developmental change in the resting state electroencephalogram: Insights into cognition and the brain
    Anderson, Alana J.
    Perone, Sammy
    [J]. BRAIN AND COGNITION, 2018, 126 : 40 - 52
  • [4] Sleep in Children with Neurodevelopmental Disabilities
    Angriman, Marco
    Caravale, Barbara
    Novelli, Luana
    Ferri, Raffaele
    Bruni, Oliviero
    [J]. NEUROPEDIATRICS, 2015, 46 (03) : 199 - 210
  • [5] Absolute and relative variability changes of the resting state brain rhythms from childhood and adolescence to young adulthood
    Angulo-Ruiz, Brenda Y.
    Munoz, Vanesa
    Rodriguez-Martinez, Elena I.
    Gomez, Carlos M.
    [J]. NEUROSCIENCE LETTERS, 2021, 749
  • [6] Archibald A, 2003, BLACKWELL HDB ADOLES, P24, DOI [DOI 10.1002/9780470756607, 10.1002/9780470756607.ch2, DOI 10.1002/9780470756607.CH2]
  • [7] Annual Research Review: The transdiagnostic revolution in neurodevelopmental disorders
    Astle, Duncan E.
    Holmes, Joni
    Kievit, Rogier
    Gathercole, Susan E.
    [J]. JOURNAL OF CHILD PSYCHOLOGY AND PSYCHIATRY, 2022, 63 (04) : 397 - 417
  • [8] Individual variation underlying brain age estimates in typical development
    Ball, Gareth
    Kelly, Claire E.
    Beare, Richard
    Seal, Marc L.
    [J]. NEUROIMAGE, 2021, 235
  • [9] Reply: From 'loose fitting' to high-performance, uncertainty-aware brain-age modelling
    Bashyam, Vishnu
    Shou, Haochang
    Davatzikos, Christos
    [J]. BRAIN, 2021, 144 (03)
  • [10] MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide
    Bashyam, Vishnu M.
    Erus, Guray
    Doshi, Jimit
    Habes, Mohamad
    Nasralah, Ilya
    Truelove-Hill, Monica
    Srinivasan, Dhivya
    Mamourian, Liz
    Pomponio, Raymond
    Fan, Yong
    Launer, Lenore J.
    Masters, Colin L.
    Maruff, Paul
    Zhuo, Chuanjun
    Volzke, Henry
    Johnson, Sterling C.
    Fripp, Jurgen
    Koutsouleris, Nikolaos
    Satterthwaite, Theodore D.
    Wolf, Daniel
    Gur, Raquel E.
    Gur, Ruben C.
    Morris, John
    Albert, Marilyn S.
    Grabe, Hans J.
    Resnick, Susan
    Bryan, R. Nick
    Wolk, David A.
    Shou, Haochang
    Davatzikos, Christos
    [J]. BRAIN, 2020, 143 : 2312 - 2324