Some results of quasi-convex mappings which have a Φ-parametric representation in higher dimensions

被引:0
作者
Xiong, Liangpeng [1 ]
Xiong, Junzhou [1 ]
Zhang, Ruyu [1 ]
机构
[1] Jiangxi Sci & Technol Normal Univ, Sch Math & Comp Sci, Nanchang 330038, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Fekete-Szego inequalities; Homogeneous expansions; Phi-parametric representation mappings; k-Fold symmetric mapping; Quasi-convex mappings; SZEGO PROBLEM; FEKETE; CONJECTURE; SUBCLASS; STARLIKE; PROOF;
D O I
10.1007/s13324-024-00930-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E-X be a unit ball on complex Banach space X and Phi be a convex function such that Phi(0)=1 and R Phi(xi) > 0 on D = {z is an element of C : |z| < 1}. In this paper, we continue the work related to the class Q(B)(Phi)(EX)of quasi-convex mappings of type B which have a Phi-parametric representation on E-X, where the mappings f is an element of Q(B)(Phi)(E-X) are k-fold symmetric, k is an element of N. We give the improved Fekete-Szego inequalities for the class Q(B)(Phi)(E-X)and establish the sharp bounds of all terms of homogeneous polynomial expansions for some subclasses of Q(B)(Phi)(E-X). Our main results are closely related to the Bieberbach conjecture in higher dimensions.
引用
收藏
页数:20
相关论文
共 34 条
[21]   QUASI-CONVEX MAPPINGS OF ORDER α ON THE UNIT POLYDISK IN Cn [J].
Liu, Xiao-Song ;
Liu, Ming-Sheng .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (05) :1619-1644
[22]   A proof of a weak version of the Bieberbach conjecture in several complex variables [J].
Liu XiaoSong ;
Liu TaiShun ;
Xu QingHua .
SCIENCE CHINA-MATHEMATICS, 2015, 58 (12) :2531-2540
[23]   Generalized Zalcman conjecture for starlike and typically real functions [J].
Ma, W .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 234 (01) :328-339
[24]   Convexity properties of holomorphic mappings in Cn [J].
Roper, KA ;
Suffridge, TJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (05) :1803-1833
[25]   UNIFIED SOLUTION OF FEKETE-SZEGO PROBLEM FOR SUBCLASSES OF STARLIKE MAPPINGS IN SEVERAL COMPLEX VARIABLES [J].
Tu, Zhenhan ;
Xiong, Liangpeng .
MATHEMATICA SLOVACA, 2019, 69 (04) :843-856
[26]   Coefficient bounds for class of g-starlike mappings of complex order γ in [J].
Xiong, Liangpeng ;
Wang, Yaqian ;
Zhang, Ruyu .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (08) :1270-1280
[27]  
Xiong LP, 2023, ANAL MATH PHYS, V13, DOI 10.1007/s13324-023-00797-8
[28]   On the Fekete and Szego Problem for the Class of Starlike Mappings in Several Complex Variables [J].
Xu, Qing-Hua ;
Liu, Tai-Shun .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[29]   The refinement of Fekete and Szego problems for close-to-convex functions and close-to-quasi-convex mappings [J].
Xu, Qinghua ;
Jiang, Ting ;
Liu, Taishun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 527 (01)
[30]   The Fekete and Szego inequality for a class of holomorphic mappings on the unit polydisk in Cn and its application [J].
Xu, Qinghua ;
Liu, Taishun ;
Lu, Jin .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (01) :67-80