Some results of quasi-convex mappings which have a Φ-parametric representation in higher dimensions

被引:0
作者
Xiong, Liangpeng [1 ]
Xiong, Junzhou [1 ]
Zhang, Ruyu [1 ]
机构
[1] Jiangxi Sci & Technol Normal Univ, Sch Math & Comp Sci, Nanchang 330038, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Fekete-Szego inequalities; Homogeneous expansions; Phi-parametric representation mappings; k-Fold symmetric mapping; Quasi-convex mappings; SZEGO PROBLEM; FEKETE; CONJECTURE; SUBCLASS; STARLIKE; PROOF;
D O I
10.1007/s13324-024-00930-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E-X be a unit ball on complex Banach space X and Phi be a convex function such that Phi(0)=1 and R Phi(xi) > 0 on D = {z is an element of C : |z| < 1}. In this paper, we continue the work related to the class Q(B)(Phi)(EX)of quasi-convex mappings of type B which have a Phi-parametric representation on E-X, where the mappings f is an element of Q(B)(Phi)(E-X) are k-fold symmetric, k is an element of N. We give the improved Fekete-Szego inequalities for the class Q(B)(Phi)(E-X)and establish the sharp bounds of all terms of homogeneous polynomial expansions for some subclasses of Q(B)(Phi)(E-X). Our main results are closely related to the Bieberbach conjecture in higher dimensions.
引用
收藏
页数:20
相关论文
共 34 条
[1]  
Bieberbach L, 1916, SITZBER K PREUSS AKA, P940
[2]  
Cartan H., 1933, Lecons sur les Fonctions Univalentes ou Multivalentes
[3]   A PROOF OF THE BIEBERBACH CONJECTURE [J].
DEBRANGES, L .
ACTA MATHEMATICA, 1985, 154 (1-2) :137-152
[4]  
Dlugosz R, 2021, ANN MAT PUR APPL, V200, P1841, DOI 10.1007/s10231-021-01094-6
[5]  
Dugosz R., 2022, Anal. Math. Phys, V12, P103
[6]   The Fekete-Szego problem for spirallike mappings and non-linear resolvents in Banach spaces [J].
Elin, Mark ;
Jacobzon, Fiana .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2022, 67 (02) :329-344
[7]   Note on the Fekete-Szego Problem for Spirallike Mappings in Banach Spaces [J].
Elin, Mark ;
Jacobzon, Fiana .
RESULTS IN MATHEMATICS, 2022, 77 (03)
[8]  
Fekete M., 1933, J. Lond. Math. Soc., V1, P85, DOI [10.1112/jlms/s1-8.2.85, DOI 10.1112/JLMS/S1-8.2.85]
[9]   Toeplitz Determinants for a Class of Holomorphic Mappings in Higher Dimensions [J].
Giri, Surya ;
Kumar, S. Sivaprasad .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2023, 17 (06)
[10]  
Gong S., 1999, The Bieberbach Conjecture, DOI [10.1090/amsip/012, DOI 10.1090/AMSIP/012]