Maximizing Irrigated Maize Productivity: Evaluating the Impact of Deficit Irrigation and Nitrogen Rates on Growth, Yield, and Water-Use Efficiency in Southwest Ethiopia

被引:2
|
作者
Tadesse, Minda Bedane [1 ]
Asefa, Addisu [1 ]
Admasu, Robel [1 ]
Tilahun, Etefa [1 ]
Tadesse, Hewan [1 ]
Takala, Bikila [2 ]
Ayanaw, Huluager [1 ]
机构
[1] Jimma Agr Res Ctr, Dept Irrigat & Water Harvesting Res, POB 192, Jimma, Ethiopia
[2] Jimma Agr Res Ctr, Dept Soil Fertil & Hlth Management Res, POB 192, Jimma, Ethiopia
关键词
Deficit irrigation; Water-use efficiency; Maize yield; dry biomass; Nitrogen rates; ZEA-MAYS L; GRAIN-YIELD; HARVEST INDEX; MANAGEMENT; ROOT; BIOMASS;
D O I
10.1061/JIDEDH.IRENG-10238
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Maize is vital in Ethiopia, particularly in Jimma. However, the benefits of deficit irrigation (DI) under varying nitrogen rates (NRs) for maize remain unknown. A 3-year field experiment assessed maize response to different NRs (N0=0 kg ha-1, N23=23 kg ha-1, N46=46 kg ha-1, N69=69 kg ha-1, and N92=92 N kg ha-1) under three DI levels (I50=50, I75=75, and I100=100% ETc). Factors such as rain-fed findings, soil testing, and local recommendations were considered in determining these rates. The results showed significant effects of DI, NR, and their interactions on grain yield, biomass, water-use efficiency (WUE), nitrogen-use efficiency (NUE), and harvest index (HI). Without nitrogen, 50% DI led to a greater than 50% reduction in yield and biomass compared with that at I100xN0. However, WUE and HI increased at I50xN92 compared with I100xN0. Increasing irrigation and nitrogen levels improved yield and biomass. Optimal WUE was achieved with irrigation close to 75% ETc without compromising yields. Agronomic yield significantly improved with NR above 92 kg N ha-1 under mild deficit and full irrigation, but higher rates did not provide additional benefits under severe deficit conditions. The economically optimum nitrogen rate ranged from 78 to 80 kg N ha-1 for irrigation levels ranging from 50% to 100% ETc. The study suggests that applying 80 kg N ha-1 with 75%-100% ETc levels is the best approach to enhance maize yield and achieve economic benefits. Further research is needed to explore DIs below 50% and above 100% ETc, as well as nitrogen fertilization rates above 92 kg ha-1, in order to optimize maize production in the region. This study examined the benefits of deficit irrigation and fluctuating nitrogen rates for maize production in Jimma, Ethiopia. By adopting deficit irrigation strategies and adjusting nitrogen rates, producers can reduce water withdrawal by approximately 25%. This approach optimizes both water-use efficiency and nitrogen-use efficiency without compromising yields. Increasing irrigation and nitrogen rates above I100xN92 improves agronomic yield, whereas reducing them below I50xN46 significantly decreases yield and WUE. Economically optimum nitrogen rates range from 78 to 80 kg N ha-1 with 50%-100% full irrigation. Balancing input costs and potential benefits is crucial for optimizing irrigation and nitrogen rates for maize production. To maximize agronomic yield, full irrigation with 92 kg N ha-1 (less than 96 kg N ha-1) is advisable. To optimize water use, 75% of full irrigation with 92 kg N ha-1 is recommended. To optimize nitrogen (economic yield) and achieve higher net returns, fully irrigating the maize crop with 80 kg ha-1 of nitrogen fertilization is advised. Farmers should adapt these findings to local conditions, considering factors such as soil characteristics, nitrogen price, and water price, and should consult local experts. Further research is needed to explore the effects of more or less than 50% full irrigation and of nitrogen doses exceeding 92 kg ha-1.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Alternate furrow irrigation affects yield and water-use efficiency of maize under deficit irrigation
    Golzardi, Farid
    Baghdadi, Amirsaleh
    Afshar, Reza Keshavarz
    CROP & PASTURE SCIENCE, 2017, 68 (08): : 726 - 734
  • [2] EFFECT OF IRRIGATION ON WATER-USE, WATER-USE EFFICIENCY, GROWTH AND YIELD OF MUNGBEAN
    PANNU, RK
    SINGH, DP
    FIELD CROPS RESEARCH, 1993, 31 (1-2) : 87 - 100
  • [3] Irrigated Silage Maize Yield and Water Productivity Response to Deficit Irrigation in an Arid Region
    Salemi, Hamidreza
    Soom, Mohd Amin Mohd
    Mousavi, Sayed-Farhad
    Ganji, Arman
    Lee, Teang Shui
    Yusoff, Mohd Kamil
    Verdinejad, Vahid Reza
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2011, 20 (05): : 1295 - 1303
  • [4] INFLUENCE OF IRRIGATION AND NITROGEN ON YIELD AND WATER-USE EFFICIENCY OF FINGERMILLET
    RAO, KL
    RAJU, DVN
    RAO, CP
    INDIAN JOURNAL OF AGRONOMY, 1991, 36 (01) : 55 - 60
  • [5] Physiology, Yield and Water-Use Efficiency of Cucumber Affected By Deficit Irrigation
    Parkash, Ved
    Singh, Sukhbir
    Deb, Sanjit
    Ritchie, Glen
    Wallace, Russell W.
    HORTSCIENCE, 2020, 55 (09) : S359 - S359
  • [6] Coupling effects of irrigation amount and nitrogen fertilizer type on grain yield, water productivity and nitrogen use efficiency of drip-irrigated maize
    Guo, Jinjin
    Fan, Junliang
    Xiang, Youzhen
    Zhang, Fucang
    Yan, Shicheng
    Zhang, Xueyan
    Zheng, Jing
    Li, Yuepeng
    Tang, Zijun
    Li, Zhijun
    AGRICULTURAL WATER MANAGEMENT, 2022, 261
  • [7] EFFECT OF IRRIGATION AND NITROGEN ON GROWTH, YIELD AND WATER-USE OF FRENCHBEAN
    HEGDE, DM
    SRINIVAS, K
    INDIAN JOURNAL OF AGRONOMY, 1989, 34 (02) : 180 - 184
  • [8] Effects of deficit irrigation on yield, yield components and water-use efficiency of winter wheat
    Zhang, XY
    Pei, D
    Chen, SY
    JOURNAL OF EXPERIMENTAL BOTANY, 2003, 54 : 8 - 8
  • [9] An improved water-use efficiency for maize grown under regulated deficit irrigation
    Kang, SZ
    Shi, WJ
    Zhang, JH
    FIELD CROPS RESEARCH, 2000, 67 (03) : 207 - 214
  • [10] Nutrients uptake and water use efficiency of drip irrigated maize under deficit irrigation
    Eissa, Mamdouh A.
    Negim, Osama E.
    JOURNAL OF PLANT NUTRITION, 2019, 42 (01) : 79 - 88