Anisotropic Magnon Transport in Van Der Waals Ferromagnetic Insulators

被引:3
作者
Cui, Qirui [1 ,2 ]
Bai, Xiaocheng [3 ]
Delin, Anna [1 ,2 ,4 ]
机构
[1] KTH Royal Inst Technol, AlbaNova Univ Ctr, Sch Engn Sci, Dept Appl Phys, SE-10691 Stockholm, Sweden
[2] KTH Royal Inst Technol, Swedish Sci Res Ctr, SE-10044 Stockholm, Sweden
[3] Xian Univ Posts & Telecommun, Sch Sci, Xian 710121, Peoples R China
[4] KTH Royal Inst Technol, Wallenberg Initiat Mat Sci Sustainabil WISE, SE-10044 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
anisotropy; heat-to-spin conversion; low-symmetric magnets; magnonic transport; MAGNETIC-PROPERTIES; SPIN; SYMMETRY;
D O I
10.1002/adfm.202407469
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Details on anisotropic magnon dispersion in van der Waals (vdW) ferromagnetic insulators CrPS4 and CrSBr are reported, driven by anisotropic Heisenberg exchange couplings arising from in-plane broken crystal symmetry. The anisotropic magnon dispersion contributes to longitudinal and transverse magnon currents generating the anisotropic spin Seebeck effect (ASSE) and the thermal Hall effect (THE) accompanied with spin Nernst effect (SNE), requiring neither external magnetic field nor Berry curvature. In CrPS4, the ASSE exhibits a very large anisotropy ratio of over 100% as the thermal gradient along different main axes, and this ratio can be further tuned by temperature or a gate current. The THE and SNE unconstrained by spin-orbit coupling (SOC) emerge when the thermal gradient is not parallel to the main axis, characterized by a large Hall angle approximate to 0.4. Compared to CrPS4, CrSBr exhibits a more limited anisotropic magnon transport owing to the less variation in magnon group velocities along different main axes. Moreover, the reversed magnitude relationship of magnon group velocities leads to the transverse magnon current being oriented in the opposite direction. These findings identify low-symmetry vdW magnetic materials as a promising framework for generation and manipulation of anisotropic magnon transport, relevant for spincaloritronic devices in the ultrathin regime.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Spin stiffness and spin excitation gap of van der Waals ferromagnetic Fe3+δGeTe2 [J].
Shu, Zhixue ;
Zhang, Shufeng ;
Kong, Tai .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (38)
[32]   Multi-parameter control of photodetection in van der Waals magnet CrSBr [J].
Yang, Shiqi ;
Song, Zhigang ;
Gao, Yuchen ;
Huang, Leyan ;
Huang, Xinyue ;
Gu, Pingfan ;
Liu, Wenjing ;
Chen, Zuxin ;
Ye, Yu .
LIGHT-SCIENCE & APPLICATIONS, 2025, 14 (01)
[33]   Boosting the Curie temperature of GaN monolayer through van der Waals heterostructures [J].
Wu, Qianqian ;
Wang, Jin ;
Zhi, Ting ;
Zhuang, Yanling ;
Tao, Zhikuo ;
Shao, Pengfei ;
Cai, Qing ;
Yang, Guofeng ;
Xue, Junjun ;
Chen, Dunjun ;
Zhang, Rong .
NANOTECHNOLOGY, 2024, 35 (30)
[34]   Tunable electronic properties of the ferromagnetic VS 2 /ZnPSe 3 van der Waals heterostructure under external electric field [J].
Zhang, Shuai ;
Niu, Wenbo ;
Yang, Jianhua ;
Kang, Dawei ;
Zhang, Shaofeng .
PHYSICS LETTERS A, 2024, 512
[35]   Modulation of Metal and Insulator States in 2D Ferromagnetic VS2 by van der Waals Interaction Engineering [J].
Guo, Yuqiao ;
Deng, Haitao ;
Sun, Xu ;
Li, Xiuling ;
Zhao, Jiyin ;
Wu, Junchi ;
Chu, Wangsheng ;
Zhang, Sijia ;
Pan, Haibin ;
Zheng, Xusheng ;
Wu, Xiaojun ;
Jin, Changqing ;
Wu, Changzheng ;
Xie, Yi .
ADVANCED MATERIALS, 2017, 29 (29)
[36]   Extraordinary phase transition revealed in a van der Waals antiferromagnet [J].
Guo, Xiaoyu ;
Liu, Wenhao ;
Schwartz, Jonathan ;
Sung, Suk Hyun ;
Zhang, Dechen ;
Shimizu, Makoto ;
Kondusamy, Aswin L. N. ;
Li, Lu ;
Sun, Kai ;
Deng, Hui ;
Jeschke, Harald O. ;
Mazin, Igor I. ;
Hovden, Robert ;
Lv, Bing ;
Zhao, Liuyan .
NATURE COMMUNICATIONS, 2024, 15 (01)
[37]   Spin supercurrent in superconductor/ferromagnet van der Waals heterostructures [J].
Bobkov, G. A. ;
Bobkov, A. M. ;
V. Bobkova, I. .
PHYSICAL REVIEW B, 2024, 110 (10)
[38]   Tuning terahertz magnons in a mixed van der Waals antiferromagnet [J].
Le Mardele, F. ;
Mohelsky, I. ;
Jana, D. ;
Pawbake, A. ;
Dzian, J. ;
Lee, W. -L. ;
Raju, K. ;
Sankar, R. ;
Faugeras, C. ;
Potemski, M. ;
Zhitomirsky, M. E. ;
Orlita, M. .
PHYSICAL REVIEW B, 2024, 110 (17)
[39]   Layer contribution to optical signals of van der Waals heterostructures [J].
Wang, Su-Yun ;
Chen, Guo-Xing ;
Guo, Qin-Qin ;
Huang, Kai-Xuan ;
Zhang, Xi-Lin ;
Yan, Xiao-Qing ;
Liu, Zhi-Bo ;
Tian, Jian-Guo .
NANOSCALE ADVANCES, 2021, 3 (11) :3114-3123
[40]   Symmetry-Controlled Electron-Phonon Interactions in van der Waals Heterostructures [J].
Chen, Chen ;
Chen, Xiaolong ;
Yu, Hongyi ;
Shao, Yuchuan ;
Guo, Qiushi ;
Deng, Bingchen ;
Lee, Sungmin ;
Ma, Chao ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Park, Je-Geun ;
Huang, Shengxi ;
Yao, Wang ;
Xia, Fengnian .
ACS NANO, 2019, 13 (01) :552-559