Anisotropic Magnon Transport in Van Der Waals Ferromagnetic Insulators

被引:0
作者
Cui, Qirui [1 ,2 ]
Bai, Xiaocheng [3 ]
Delin, Anna [1 ,2 ,4 ]
机构
[1] KTH Royal Inst Technol, AlbaNova Univ Ctr, Sch Engn Sci, Dept Appl Phys, SE-10691 Stockholm, Sweden
[2] KTH Royal Inst Technol, Swedish Sci Res Ctr, SE-10044 Stockholm, Sweden
[3] Xian Univ Posts & Telecommun, Sch Sci, Xian 710121, Peoples R China
[4] KTH Royal Inst Technol, Wallenberg Initiat Mat Sci Sustainabil WISE, SE-10044 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
anisotropy; heat-to-spin conversion; low-symmetric magnets; magnonic transport; MAGNETIC-PROPERTIES; SPIN; SYMMETRY;
D O I
10.1002/adfm.202407469
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Details on anisotropic magnon dispersion in van der Waals (vdW) ferromagnetic insulators CrPS4 and CrSBr are reported, driven by anisotropic Heisenberg exchange couplings arising from in-plane broken crystal symmetry. The anisotropic magnon dispersion contributes to longitudinal and transverse magnon currents generating the anisotropic spin Seebeck effect (ASSE) and the thermal Hall effect (THE) accompanied with spin Nernst effect (SNE), requiring neither external magnetic field nor Berry curvature. In CrPS4, the ASSE exhibits a very large anisotropy ratio of over 100% as the thermal gradient along different main axes, and this ratio can be further tuned by temperature or a gate current. The THE and SNE unconstrained by spin-orbit coupling (SOC) emerge when the thermal gradient is not parallel to the main axis, characterized by a large Hall angle approximate to 0.4. Compared to CrPS4, CrSBr exhibits a more limited anisotropic magnon transport owing to the less variation in magnon group velocities along different main axes. Moreover, the reversed magnitude relationship of magnon group velocities leads to the transverse magnon current being oriented in the opposite direction. These findings identify low-symmetry vdW magnetic materials as a promising framework for generation and manipulation of anisotropic magnon transport, relevant for spincaloritronic devices in the ultrathin regime.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Interlayer Coupling in Anisotropic/Isotropic Van der Waals Heterostructures of ReS2 and WS2
    You, Bingying
    Xu, Zheyuan
    Yang, Junqiang
    Jiang, Xingxing
    Li, Yanfang
    Shao, Gonglei
    Jin, Yuanyuan
    Xiang, Haiyan
    Jiang, Huili
    Liu, Xiaochi
    Sun, Jian
    Feng, Yexing
    Jiang, Ying
    Pan, Anlian
    Liu, Song
    [J]. SMALL, 2024, 20 (03)
  • [22] Multitude of exceptional points in van der Waals magnets
    Li, Xin
    Deng, Kuangyin
    Flebus, Benedetta
    [J]. PHYSICAL REVIEW B, 2022, 106 (21)
  • [23] Spin dynamics in van der Waals magnetic systems
    Tang, Chunli
    Alahmed, Laith
    Mahdi, Muntasir
    Xiong, Yuzan
    Inman, Jerad
    McLaughlin, Nathan J.
    Zollitsch, Christoph
    Kim, Tae Hee
    Du, Chunhui Rita
    Kurebayashi, Hidekazu
    Santos, Elton J. G.
    Zhang, Wei
    Li, Peng
    Jin, Wencan
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2023, 1032 : 1 - 36
  • [24] Interlayer excitons in a bulk van der Waals semiconductor
    Arora, Ashish
    Drueppel, Matthias
    Schmidt, Robert
    Deilmann, Thorsten
    Schneider, Robert
    Molas, Maciej R.
    Marauhn, Philipp
    de Vasconcellos, Steffen Michaelis
    Potemski, Marek
    Rohlfing, Michael
    Bratschitsch, Rudolf
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [25] Van der Waals Solids: Properties and Device Applications
    Kaul, Anupama B.
    [J]. MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS VII, 2015, 9467
  • [26] van der Waals Metallic Transition Metal Dichalcogenides
    Han, Gang Hee
    Dinh Loc Duong
    Keum, Dong Hoon
    Yun, Seok Joon
    Lee, Young Hee
    [J]. CHEMICAL REVIEWS, 2018, 118 (13) : 6297 - 6336
  • [27] The vibration of nanosprings affected by van der Waals interactions
    Zhao, Junhua
    Ben, Sudong
    Yu, Peishi
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2194):
  • [28] Magnetic moments of lanthanide van der Waals dimers
    McCann, Joseph
    Bohn, John L.
    Augustovicova, Lucie D.
    [J]. PHYSICAL REVIEW A, 2021, 103 (04)
  • [29] Magnetic field induced valley-polarized quantum anomalous Hall effects in ferromagnetic van der Waals heterostructures
    Zhan, Fangyang
    Zheng, Baobing
    Xiao, Xiaoliang
    Fan, Jing
    Wu, Xiaozhi
    Wang, Rui
    [J]. PHYSICAL REVIEW B, 2022, 105 (03)
  • [30] Spin stiffness and spin excitation gap of van der Waals ferromagnetic Fe3+δGeTe2
    Shu, Zhixue
    Zhang, Shufeng
    Kong, Tai
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (38)