5G End-to-End Slice Embedding Based on Heterogeneous Graph Neural Network and Reinforcement Learning

被引:2
作者
Tan, Yawen [1 ]
Liu, Jiajia [2 ]
Wang, Jiadai [2 ]
机构
[1] Xidian Univ, Sch Cyber Engn, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[2] Northwestern Polytech Univ, Sch Cybersecur, Natl Engn Lab Integrated Aerosp Ground Ocean Big D, Xian 710072, Shaanxi, Peoples R China
关键词
5G slice embedding; graph neural network; reinforcement learning;
D O I
10.1109/TCCN.2024.3349452
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Network slice embedding arranges multiple slices consisting of virtual network functions and their connections onto the shared substrate network. The embedding solution greatly affects the revenue for mobile network operators and service quality for slice tenants, making it an essential issue in the 5G and beyond era. To improve embedding quality, the algorithm must detect the holistic slice embedding status automatically, which is challenging due to the complex multidimensional information involved, including attributes of the substrate and slice networks, their topologies and their embedding relationships. However, most existing schemes lack automatic embedding solutions considering multidimensional information. Therefore, we propose a general end-to-end slice embedding scheme that can automatically extract multidimensional features of the embedding situation under constraints of realistic slice requirements. A heterogeneous graph neural network based encoder generates encoding vectors containing holistic information, which are then fed into a dueling network based decoder with variable output sizes to flexibly generate embedding decisions. The encoder and decoder are trained uniformly by reinforcement learning. Simulation results demonstrate that our proposed scheme outperforms schemes based on homogeneous GNN and some heuristics by generating higher accumulated revenues to MNOs with moderate embedding cost.
引用
收藏
页码:1119 / 1131
页数:13
相关论文
共 50 条
  • [11] Reinforcement-Learning for Management of a 5G Network Slice Extension with UAVs
    Faraci, Giuseppe
    Grasso, Christian
    Schembra, Giovanni
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM 2019 WKSHPS), 2019, : 732 - 737
  • [12] 5G Network Slice Admission Control Using Optimization and Reinforcement Learning
    Haque, Md Ariful
    Kirova, Vassilka
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 854 - 859
  • [13] End-to-end deep speaker embedding learning using multi-scale attentional fusion and graph neural networks
    Kashani, Hamidreza Baradaran
    Jazmi, Siyavash
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 222
  • [14] Improving End-To-End Latency Fairness Using a Reinforcement-Learning-Based Network Scheduler
    Kwon, Juhyeok
    Ryu, Jihye
    Lee, Jee Hang
    Joung, Jinoo
    APPLIED SCIENCES-BASEL, 2023, 13 (06):
  • [15] 5G/B5G Network Slice Management via Staged Reinforcement Learning
    Liu, Chien-Chang
    Chou, Li-Der
    IEEE ACCESS, 2023, 11 : 72272 - 72280
  • [16] End-to-End Autonomous Driving Decision Based on Deep Reinforcement Learning
    Huang, Zhiqing
    Zhang, Ji
    Tian, Rui
    Zhang, Yanxin
    CONFERENCE PROCEEDINGS OF 2019 5TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS (ICCAR), 2019, : 658 - 662
  • [17] Reinforcement Learning Based VNF Scheduling with End-to-End Delay Guarantee
    Li, Junling
    Shi, Weisen
    Zhang, Ning
    Shen, Xuemin Sherman
    2019 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2019,
  • [18] Improvement of End-to-end Automatic Driving Algorithm Based on Reinforcement Learning
    Tang, Jianlin
    Li, Lingyun
    Ai, Yunfeng
    Zhao, Bin
    Ren, Liangcai
    Tian, Bin
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 5086 - 5091
  • [19] Design of a 5G Network Slice Extension With MEC UAVs Managed With Reinforcement Learning
    Faraci, Giuseppe
    Grasso, Christian
    Schembra, Giovanni
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (10) : 2356 - 2371
  • [20] Dynamic Virtual Network Embedding Algorithm Based on Graph Convolution Neural Network and Reinforcement Learning
    Zhang, Peiying
    Wang, Chao
    Kumar, Neeraj
    Zhang, Weishan
    Liu, Lei
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (12) : 9389 - 9398