Integrating geodiversity in animal spatial ecology: microhabitat selection of Eurasian lynx (Lynx lynx) and European wildcat (Felis silvestris) in a karst landscape

被引:0
作者
Conc, Spela [1 ,2 ]
Oliveira, Teresa [2 ]
Hocevar, Lan [2 ]
Cerne, Rok [3 ]
Valjavec, Mateja Breg [1 ]
Krofel, Miha [2 ]
机构
[1] Slovenian Acad Sci & Arts, Anton Melik Geog Inst, Res Ctr, Ljubljana, Slovenia
[2] Univ Ljubljana, Biotech Fac, Ljubljana, Slovenia
[3] Slovenia Forest Serv, Ljubljana, Slovenia
关键词
LiDAR; Relief features; Geomorphology; Remote sensing; Spatial ecology; Carnivores; HABITAT SELECTION; RESOURCE SELECTION; SCENT-MARKING; AVAILABILITY; CONSERVATION; FEATURES; DOLINES; PREY; PATTERNS; MAMMALS;
D O I
10.1016/j.gecco.2024.e03138
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Geodiversity, encompassing various geophysical elements, can have an important impact on species distribution and affect animal behaviour patterns. Although many wild felids are attracted to rugged terrain and conspicuous relief features, most previous research was limited to general topographical characteristics (e.g., slope or terrain ruggedness) and rarely considered the effects of specific microhabitat characteristics. This gap is primarily due to the limited availability of high-resolution digital terrain models (DTMs) and relief features data at larger scales. However, LiDAR DTMs can be used in combination with various automatic methods to detect relief features, enabling non-contact and accurate mapping of large, remote and densely-forested areas. Here, we investigated the selection patterns of various karstic relief features, as well as topographic, anthropogenic and vegetation characteristics, by two sympatric felids, the Eurasian lynx (Lynx lynx) and the European wildcat (Felis silvestris), in the Dinaric Mountains, Slovenia. We used LiDAR DTM to calculate topographic characteristics and detect karst relief features based on automatic methods. We compared the selection of these features between the GPS-collared lynx and wildcats under a use-availability approach. We also investigated the differences in the selection of these features by lynx based on their origin and experience (remnant vs. translocated and naive vs. experienced, respectively). We observed significant impact of relief features on space use by both felids and detected distinct selection patterns between the two species. Lynx selected rugged terrain and proximity of caves, cliffs, karst depressions, ridges, small rocky outcrops, and roads, but avoided human settlements and forest edges. Wildcats selected areas with lower surface slope, closer to main roads, forest edges, caves and ridges, but avoided cliffs, forest roads and human settlements. We observed stronger selection/avoidance patterns among the translocated compared to the remnant lynx, while the differences in experience levels were less important. Our study demonstrates the potential of integrating remote sensing techniques and information on geodiversity into the study of animal spatial ecology. Furthermore, our results indicate that specific relief features provide important abiotic microhabitats for felids and may influence habitat segregation between sympatric species. Our findings provide further evidence
引用
收藏
页数:14
相关论文
共 114 条
[1]   Landscape composition mediates movement and habitat selection in bobcats (Lynx rufus): implications for conservation planning [J].
Abouelezz, Hanem G. ;
Donovan, Therese M. ;
Mickey, Ruth M. ;
Murdoch, James D. ;
Freeman, Mark ;
Royar, Kimberly .
LANDSCAPE ECOLOGY, 2018, 33 (08) :1301-1318
[2]   Identification of geophysically diverse locations that may facilitate species' persistence and adaptation to climate change in the southwestern United States [J].
Albano, Christine M. .
LANDSCAPE ECOLOGY, 2015, 30 (06) :1023-1037
[3]   Where to leave a message? The selection and adaptive significance of scent-marking sites for Eurasian lynx [J].
Allen, Maximilian L. ;
Hocevar, Lan ;
de Groot, Maarten ;
Krofel, Miha .
BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY, 2017, 71 (09)
[4]   Case studies of conservation plans that incorporate geodiversity [J].
Anderson, M. G. ;
Comer, P. J. ;
Beier, P. ;
Lawler, J. J. ;
Schloss, C. A. ;
Buttrick, S. ;
Albano, C. M. ;
Faith, D. P. .
CONSERVATION BIOLOGY, 2015, 29 (03) :680-691
[5]   Predator perches: a visual search perspective [J].
Andersson, Malte ;
Wallander, Johan ;
Isaksson, Daniel .
FUNCTIONAL ECOLOGY, 2009, 23 (02) :373-379
[6]  
[Anonymous], 2024, Cave registry
[7]  
[Anonymous], 2023, R: a language and environment for statistical computing
[8]   Models of upland species' distributions are improved by accounting for geodiversity [J].
Bailey, Joseph J. ;
Boyd, Doreen S. ;
Field, Richard .
LANDSCAPE ECOLOGY, 2018, 33 (12) :2071-2087
[9]   What shapes Eurasian lynx distribution in human dominated landscapes: selecting prey or avoiding people? [J].
Basille, Mathieu ;
Herfindal, Ivar ;
Santin-Janin, Hugues ;
Linnell, John D. C. ;
Odden, John ;
Andersen, Reidar ;
Hogda, Kjell Arild ;
Gaillard, Jean-Michel .
ECOGRAPHY, 2009, 32 (04) :683-691
[10]  
Bates D, 2014, Arxiv, DOI [arXiv:1406.5823, DOI 10.18637/JSS.V067.I01, DOI 10.48550/ARXIV.1406.5823]