MULTIPLIER HERMITIAN-EINSTEIN METRICS ON FANO MANIFOLDS OF KSM-TYPE

被引:1
作者
Nakagawa, Yasuhiro [1 ]
Nakamura, Satoshi [2 ,3 ]
机构
[1] Kumamoto Univ, Fac Adv Sci & Technol, Kurokami 2-40-1,Chuo Ku, Kumamoto 8608555, Japan
[2] Numazu Coll, Natl Inst technol, 3600 Ooka, Numazu, Shizuoka 4108501, Japan
[3] Tokyo Inst Technol, Dept Math, 2-12-1 Ookayama,Meguro Ku, Tokyo 1528551, Japan
关键词
Multiplier Hermitian-Einstein metrics; KSM-manifolds; KAHLER-RICCI SOLITONS; TEST CONFIGURATIONS; K-STABILITY; GEOMETRY; FORMS;
D O I
10.2748/tmj.20220808
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we focus on multiplier Hermitian -Einstein metrics introduced by Mabuchi which include K & auml;hler-Einstein metrics, K & auml;hler-Ricci solitons and Mabuchi solitons as special cases. We also focus on KSM-manifolds, which are introduced by the first author as toric bundles, to establish a criterion for the existence of multiplier Hermitian -Einstein metrics in terms of KSM-data. An explicit example for a KSM-manifold admitting a family of multiplier Hermitian -Einstein metrics is constructed by using a continuous path connecting a K & auml;hler-Ricci soliton with a Mabuchi soliton.
引用
收藏
页码:127 / 152
页数:26
相关论文
共 41 条
[1]   Weighted K-stability and coercivity with applications to extremal Kähler and Sasaki metrics [J].
Apostolov, Vestislav ;
Jubert, Simon ;
Lahdili, Abdellah .
GEOMETRY & TOPOLOGY, 2023, 27 (08) :3229-+
[2]  
Berman R. J., 2013, ANN FAC SCI TOULOUSE, V22, P649
[3]   K-polystability of Q-Fano varieties admitting Kahler-Einstein metrics [J].
Berman, Robert J. .
INVENTIONES MATHEMATICAE, 2016, 203 (03) :973-1025
[4]  
Chen XX, 2008, ASTERISQUE, P139
[5]   Toric pluripotential theory [J].
Coman, Dan ;
Guedj, Vincent ;
Sahin, Sibel ;
Zeriahi, Ahmed .
ANNALES POLONICI MATHEMATICI, 2019, 123 (01) :215-242
[6]  
Cox D., 2011, Graduate Studies in Mathematics, V124
[7]   The Mabuchi geometry of finite energy classes [J].
Darvas, Tamas .
ADVANCES IN MATHEMATICS, 2015, 285 :182-219
[8]  
DELCROIX T., 2023, Ann. H. Lebesgue, V6, P117
[9]   Coupled complex Monge-Ampere equations on Fano horosymmetric manifolds [J].
Delcroix, Thibaut ;
Hultgren, Jakob .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 153 :281-315
[10]   K-STABILITY OF FANO SPHERICAL VARIETIES [J].
Delcroix, Thibaut .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (03) :615-662