Investigating PM 2.5 pollution patterns in South Africa using space-time analysis

被引:0
作者
Kabanda, Tabaro H. [1 ]
机构
[1] Univ Dodoma, Dept Environm Engn & Management, Dodoma, Tanzania
关键词
PM2.5; space-time cube; forecasting models; GIS; South Africa; AEROSOL OPTICAL DEPTH; PM2.5; CONCENTRATIONS; UNITED-STATES;
D O I
10.3934/environsci.2024021
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The global concentration of fine particulate matter (PM 2.5 ) is experiencing an upward trend. This study investigates the utilization of space-time cubes to visualize and interpret PM 2.5 data in South Africa over multiple temporal intervals spanning from 1998 to 2022. The findings indicated that the mean PM 2.5 concentrations in Gauteng Province were the highest, with a value of 53 mu g/m 3 in 2010, whereas the lowest mean PM 2.5 concentrations were seen in the Western Cape Province, with a value of 6.59 mu g/m 3 in 1999. In 2010, there was a rise in the average concentration of PM 2.5 across all provinces. The increase might be attributed to South Africa being the host nation for the 2010 FIFA World Cup. In most provinces, there has been a general trend of decreasing PM 2.5 concentrations over the previous decade. Nevertheless, the issue of PM 2.5 remains a large reason for apprehension. The study also forecasts South Africa ' s PM 2.5 levels until 2029 using simple curve fitting, exponential smoothing and forest -based models. Spatial analysis revealed that different areas require distinct models for accurate forecasts. The complexity of PM 2.5 trends underscores the necessity for varied models and evaluation tools.
引用
收藏
页码:426 / 443
页数:18
相关论文
共 53 条
[1]   Particulate Matter (PM2.5) Characterization, Air Quality Level and Origin of Air Masses in an Urban Background in Pretoria [J].
Adeyemi, Adewale ;
Molnar, Peter ;
Boman, Johan ;
Wichmann, Janine .
ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 2022, 83 (01) :77-94
[2]   Exploring Spatial Patterns of Virginia Tornadoes Using Kernel Density and Space-Time Cube Analysis (1960-2019) [J].
Allen, Michael J. ;
Allen, Thomas R. ;
Davis, Christopher ;
McLeod, George .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (05)
[3]  
[Anonymous], 2021, South Africa Yearbook 2021/22
[4]  
Arsham H, 2020, Time Series Ana Bus Forecast
[5]  
Barazzetti L, 2022, INT C COMP SCI ITS A, DOI [10.1007/978-3-031-10450-3_2, DOI 10.1007/978-3-031-10450-3_2]
[6]   Validation and Forecasts in Models Estimated from Multiday Travel Survey [J].
Cherchi, Elisabetta ;
Cirillo, Cinzia .
TRANSPORTATION RESEARCH RECORD, 2010, (2175) :57-64
[7]   Fine particulate matter predictions using high resolution Aerosol Optical Depth (AOD) retrievals [J].
Chudnovsky, Alexandra A. ;
Koutrakis, Petros ;
Kloog, Itai ;
Melly, Steven ;
Nordio, Francesco ;
Lyapustin, Alexei ;
Wang, Yujie ;
Schwartz, Joel .
ATMOSPHERIC ENVIRONMENT, 2014, 89 :189-198
[8]   G-STC-M Spatio-Temporal Analysis Method for Archaeological Sites [J].
Cui, Jing ;
Liu, Yanrong ;
Sun, Junling ;
Hu, Di ;
He, Handong .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (05)
[9]   Development of West-European PM2.5 and NO2 land use regression models incorporating satellite-derived and chemical transport modelling data [J].
de Hoogh, Kees ;
Gulliver, John ;
van Donkelaar, Aaron ;
Martin, Randall V. ;
Marshall, Julian D. ;
Bechle, Matthew J. ;
Cesaroni, Giulia ;
Cirach Pradas, Marta ;
Dedele, Audrius ;
Eeftens, Marloes ;
Forsberg, Bertil ;
Galassi, Claudia ;
Heinrich, Joachim ;
Hoffmann, Barbara ;
Jacquemin, Benedicte ;
Katsouyanni, Klea ;
Korek, Michal ;
Kunzli, Nino ;
Lindley, Sarah J. ;
Lepeule, Johanna ;
Meleux, Frederik ;
de Nazelle, Audrey ;
Nieuwenhuijsen, Mark ;
Nystad, Wenche ;
Raaschou-Nielsen, Ole ;
Peters, Annette ;
Peuch, Vincent-Henri ;
Rouil, Laurence ;
Udvardy, Orsolya ;
Slama, Remy ;
Stempfelet, Morgane ;
Stephanou, Euripides G. ;
Tsai, Ming Y. ;
Yli-Tuomi, Tarja ;
Weinmayr, Gudrun ;
Brunekreef, Bert ;
Vienneau, Danielle ;
Hoek, Gerard .
ENVIRONMENTAL RESEARCH, 2016, 151 :1-10
[10]  
Department of Environmental Affairs (DEA), 2019, Draft baseline assessment report