Life cycle assessment of bio-based hard carbon for sodium-ion batteries across different production scales

被引:8
作者
Liu, Huiting [1 ,2 ]
Baumann, Manuel [1 ]
Moon, Hyein [3 ]
Zhang, Xiang [4 ]
Dou, Xinwei [3 ]
Zarrabeitia, Maider [3 ]
Crenna, Eleonora [5 ]
Hischier, Roland [5 ]
Passerini, Stefano [3 ,6 ]
von der Assen, Niklas [2 ]
Weil, Marcel [1 ,3 ]
机构
[1] Karlsruhe Inst Technol, Inst Technol Assessment & Syst Anal ITAS, Karlstr 11, D-76133 Karlsruhe, Germany
[2] Rhein Westfal TH Aachen, Inst Tech Thermodynam LTT, Schinkelstr 8, D-52062 Aachen, Germany
[3] Karlsruhe Inst Technol, Helmholtz Inst Ulm HIU, Helmholtzstr 11, D-89081 Ulm, Germany
[4] Shanghai PuNa Energy Technol Co Ltd, Xiasheng Rd 600, Shanghai 201512, Peoples R China
[5] Empa, Swiss Fed Labs Mat Sci & Technol, Technol & Soc Lab, Lerchenfeldstr 5, CH-9014 St Gallen, Switzerland
[6] Sapienza Univ, Chem Dept, Piazzale A Moro 5, I-00185 Rome, Italy
基金
中国国家自然科学基金;
关键词
Life cycle assessment; Hard carbon; Biomass; Up-scaling; Sodium-ion battery; Hotspots; ELECTRODE;
D O I
10.1016/j.cej.2024.153410
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper aims to address research gaps surrounding the environmental impact of Hard Carbon (HC) production by conducting a Life Cycle Assessment (LCA) based on data from two laboratories with differing backgrounds and scenarios. HC is commonly used as anode material for sodium-ion batteries, a potentially sustainable and costefficient alternative for lithium-ion batteries. The study identifies environmentally sustainable routes for HC synthesis by comparing various biomass and synthesis pathways. The study reveals that the energy consumption of the pyrolysis process is the primary contributor to the environmental footprint of lab-scale HC production. A prospective LCA is performed by upscaling the laboratory processes to pilot- and industrial scale based on expert judgement and assumptions on energy and material balance. The results show that the environmental profile of HC can be significantly improved when the production scale is expanded. At large production scales, HC shows great potential to be used as a counterpart to graphite in future battery systems. However, direct emissions, such as methane, and the depletion of materials, such as argon and acid, become more critical to the environmental footprint, highlighting the need for energy recovery, emission treatment strategies, and more efficient use of materials. This work provides a framework for future LCA studies of HC, highlighting the limitations of simplified upscaling. It also provides a foundation for developing sustainable energy storage systems, thereby contributing to more informed decision-making in HC industrial production.
引用
收藏
页数:13
相关论文
共 49 条
[1]   Plant-derived hard carbon as anode for sodium-ion batteries: A comprehensive review to guide interdisciplinary research [J].
Alvira, Dario ;
Antoran, Daniel ;
Manya, J. Joan .
CHEMICAL ENGINEERING JOURNAL, 2022, 447
[2]   A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030+ [J].
Amici, Julia ;
Asinari, Pietro ;
Ayerbe, Elixabete ;
Barboux, Philippe ;
Bayle-Guillemaud, Pascale ;
Behm, R. Juergen ;
Berecibar, Maitane ;
Berg, Erik ;
Bhowmik, Arghya ;
Bodoardo, Silvia ;
Castelli, Ivano E. ;
Cekic-Laskovic, Isidora ;
Christensen, Rune ;
Clark, Simon ;
Diehm, Ralf ;
Dominko, Robert ;
Fichtner, Maximilian ;
Franco, Alejandro A. ;
Grimaud, Alexis ;
Guillet, Nicolas ;
Hahlin, Maria ;
Hartmann, Sarah ;
Heiries, Vincent ;
Hermansson, Kersti ;
Heuer, Andreas ;
Jana, Saibal ;
Jabbour, Lara ;
Kallo, Josef ;
Latz, Arnulf ;
Lorrmann, Henning ;
Lovvik, Ole Martin ;
Lyonnard, Sandrine ;
Meeus, Marcel ;
Paillard, Elie ;
Perraud, Simon ;
Placke, Tobias ;
Punckt, Christian ;
Raccurt, Olivier ;
Ruhland, Janna ;
Sheridan, Edel ;
Stein, Helge ;
Tarascon, Jean-Marie ;
Trapp, Victor ;
Vegge, Tejs ;
Weil, Marcel ;
Wenzel, Wolfgang ;
Winter, Martin ;
Wolf, Andreas ;
Edstrom, Kristina .
ADVANCED ENERGY MATERIALS, 2022, 12 (17)
[3]  
[Anonymous], 2015, TATuP Z Technikfolgenabschtzung Theorie Praxis, DOI DOI 10.14512/TATUP.24.3.4
[4]  
[Anonymous], 2006, DIN EN ISO 14040:2021-02, DOI [10.31030/3179655, DOI 10.31030/3179655]
[5]  
[Anonymous], 2024, ecoinvent 3.8 - now available for openLCA | openLCA.org
[6]  
[Anonymous], 2018, 14044201805 DIN EN I, DOI [10.31030/2761237, DOI 10.31030/2761237]
[7]  
[Anonymous], 2010, ILCD HDB GEN GUID LI
[8]   Addressing the energy sustainability of biowaste-derived hard carbon materials for battery electrodes [J].
Baldinelli, Arianna ;
Dou, Xinwei ;
Buchholz, Daniel ;
Marinaro, Mario ;
Passerini, Stefano ;
Barelli, Linda .
GREEN CHEMISTRY, 2018, 20 (07) :1527-1537
[9]   Charging sustainable batteries comment [J].
Bauer, Christian ;
Burkhardt, Simon ;
Dasgupta, Neil P. ;
Ellingsen, Linda Ager-Wick ;
Gaines, Linda L. ;
Hao, Han ;
Hischier, Roland ;
Hu, Liangbing ;
Huang, Yunhui ;
Janek, Juergen ;
Liang, Chengdu ;
Li, Hong ;
Li, Ju ;
Li, Yangxing ;
Lu, Yi-Chun ;
Luo, Wei ;
Nazar, Linda F. ;
Olivetti, Elsa A. ;
Peters, Jens F. ;
Rupp, Jennifer L. M. ;
Weil, Marcel ;
Whitacre, Jay F. ;
Xu, Shengming .
NATURE SUSTAINABILITY, 2022, 5 (03) :176-178
[10]   Prospective Sustainability Screening of Sodium-Ion Battery Cathode Materials [J].
Baumann, Manuel ;
Haeringer, Marcel ;
Schmidt, Marius ;
Schneider, Luca ;
Peters, Jens F. ;
Bauer, Werner ;
Binder, Joachim R. ;
Weil, Marcel .
ADVANCED ENERGY MATERIALS, 2022, 12 (46)