Mapping drivers of tropical forest loss with satellite image time series and machine learning

被引:0
作者
Pisl, Jan [1 ]
Russwurm, Marc [1 ,2 ]
Hughes, Lloyd Haydn [1 ]
Lenczner, Gaston [1 ]
See, Linda [3 ]
Wegner, Jan Dirk [4 ]
Tuia, Devis [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Sion, Switzerland
[2] Wageningen Univ, Wageningen, Netherlands
[3] Int Inst Appl Syst Anal IIASA, Laxenburg, Austria
[4] Univ Zurich, Zurich, Switzerland
来源
ENVIRONMENTAL RESEARCH LETTERS | 2024年 / 19卷 / 06期
基金
欧盟地平线“2020”;
关键词
remote sensing; earth observation; machine learning; deep learning; time series; deforestation; tropical forest; NEURAL-NETWORK; CLASSIFICATION;
D O I
10.1088/1748-9326/ad44b2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The rates of tropical deforestation remain high, resulting in carbon emissions, biodiversity loss, and impacts on local communities. To design effective policies to tackle this, it is necessary to know what the drivers behind deforestation are. Since drivers vary in space and time, producing accurate spatially explicit maps with regular temporal updates is essential. Drivers can be recognized from satellite imagery but the scale of tropical deforestation makes it unfeasible to do so manually. Machine learning opens up possibilities for automating and scaling up this process. In this study, we developed and trained a deep learning model to classify the drivers of any forest loss-including deforestation-from satellite image time series. Our model architecture allows understanding of how the input time series is used to make a prediction, showing the model learns different patterns for recognizing each driver and highlighting the need for temporal data. We used our model to classify over 588 ' 000 sites to produce a map detailing the drivers behind tropical forest loss. The results confirm that the majority of it is driven by agriculture, but also show significant regional differences. Such data is a crucial source of information to enable targeting specific drivers locally and can be updated in the future using free satellite data.
引用
收藏
页数:18
相关论文
共 45 条
  • [1] What causes deforestation in Indonesia?
    Austin, Kemen G.
    Schwantes, Amanda
    Gu, Yaofeng
    Kasibhatla, Prasad S.
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2019, 14 (02)
  • [2] Bahdanau D, 2016, Arxiv, DOI arXiv:1409.0473
  • [3] Drivers of tropical forest loss between 2008 and 2019
    Bayas, Juan Carlos Laso
    See, Linda
    Georgieva, Ivelina
    Schepaschenko, Dmitry
    Danylo, Olga
    Durauer, Martina
    Bartl, Hedwig
    Hofhansl, Florian
    Zadorozhniuk, Roman
    Burianchuk, Maksym
    Sirbu, Flavius
    Magori, Brigitte
    Blyshchyk, Kateryna
    Blyshchyk, Volodymyr
    Rabia, Ahmed Harb
    Pawe, Chandra Kant
    Su, Yuan-Fong
    Ahmed, Merajuddin
    Panging, Kripal
    Melnyk, Oleksandr
    Vasylyshyn, Olesia
    Vasylyshyn, Roman
    Bilous, Andrii
    Bilous, Svitlana
    Das, Krishna
    Prestele, Reinhard
    Perez-Hoyos, Ana
    Bungnamei, Khangsembou
    Lashchenko, Andrii
    Lakyda, Maryna
    Lakyda, Ivan
    Serediuk, Oleksandr
    Domashovets, Galyna
    Yurchuk, Yuriy
    Koper, Michele
    Fritz, Steffen
    [J]. SCIENTIFIC DATA, 2022, 9 (01)
  • [4] M3Fusion: A Deep Learning Architecture for Multiscale Multimodal Multitemporal Satellite Data Fusion
    Benedetti, Paola
    Ienco, Dino
    Gaetano, Raffaele
    Ose, Kenji
    Pensa, Ruggero G.
    Dupuy, Stephane
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (12) : 4939 - 4949
  • [5] Classifying drivers of global forest loss
    Curtis, Philip G.
    Slay, Christy M.
    Harris, Nancy L.
    Tyukavina, Alexandra
    Hansen, Matthew C.
    [J]. SCIENCE, 2018, 361 (6407) : 1108 - 1111
  • [6] Tropical deforestation drivers and associated carbon emission factors derived from remote sensing data
    De Sy, V
    Herold, M.
    Achard, F.
    Avitabile, V
    Baccini, A.
    Carter, S.
    Clevers, J. G. P. W.
    Lindquist, E.
    Pereira, Maria
    Verchot, L.
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2019, 14 (09):
  • [7] Land use patterns and related carbon losses following deforestation in South America
    De Sy, V.
    Herold, M.
    Achard, F.
    Beuchle, R.
    Clevers, J. G. P. W.
    Lindquist, E.
    Verchot, L.
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2015, 10 (12):
  • [8] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [9] A Continental Assessment of the Drivers of Tropical Deforestation With a Focus on Protected Areas
    Fritz, Steffen
    Bayas, Juan Carlos Laso
    See, Linda
    Schepaschenko, Dmitry
    Hofhansl, Florian
    Jung, Martin
    Duerauer, Martina
    Georgieva, Ivelina
    Danylo, Olga
    Lesiv, Myroslava
    McCallum, Ian
    [J]. FRONTIERS IN CONSERVATION SCIENCE, 2022, 3
  • [10] Garnot V S F, 2020, IEEE C COMP VIS PATT