Achieving superb mechanical properties in CoCrFeNi high-entropy alloy microfibers via electric current treatment

被引:27
作者
Gao, Xiaoyu [1 ]
Liu, Jian [2 ]
Bo, Le [1 ]
Chen, Wen [2 ]
Sun, Jianfei [1 ]
Ning, Zhiliang [1 ]
Ngan, W. [3 ]
Huang, Yongjiang [1 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
[2] Univ Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01003 USA
[3] Univ Hong Kong, Dept Mech Engn, Pokfulam Rd, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
High-entropy alloy; Microfiber; Electric current treatment; Strength; Plasticity; GRAIN-SIZE; 9R PHASE; STRENGTH; MICROSTRUCTURE; DUCTILITY; METALS; DEFORMATION; PROPAGATION; STABILITY; BEHAVIOR;
D O I
10.1016/j.actamat.2024.120203
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Metallic microfibers with high strength and ductility are highly desirable for engineering applications. In this work, electric current treatment (ECT) is applied to CoCrFeNi high-entropy alloy (HEA) microfibers prepared by a multi-process of heavy-drawing. A high yield strength (1.1 GPa) and large uniform elongation (43%) are obtained in the microfibers ECTed at a current density of 140 A /mm2. 2 . In-depth microstructural characterization indicates that the high performance is derived from a combination of controlled structural homogeneity, grain size, and intragranular dislocation density by ECT. This process generates a number of microstructural features including homogeneous ultrafine grains, low dislocation density, and dense 9R phase within the HEA microfiber. Among them, the low dislocation density enables significant dislocation scarcity-induced hardening beyond grain boundary strengthening, which brings hardening accounting for 47% of the yield strength. After yielding, the sequential activation of stress-dependent multiple hardening mechanisms endows the microfibers with a sustained strain-hardening capability and thus a large ductility. This work offers a promising avenue for achieving strength-ductility synergy in metallic microfibers.
引用
收藏
页数:13
相关论文
共 80 条
[1]   Twinning via the motion of incoherent twin boundaries nucleated at grain boundaries in a nanocrystalline Cu alloy [J].
An, X. H. ;
Song, M. ;
Huang, Y. ;
Liao, X. Z. ;
Ringer, S. P. ;
Langdon, T. G. ;
Zhu, Y. T. .
SCRIPTA MATERIALIA, 2014, 72-73 :35-38
[2]   Achieving superior combined cryogenic strength and ductility in a high-entropy alloy via the synergy of low stacking fault energy and multiscale heterostructure [J].
An, Zibing ;
Mao, Shengcheng ;
Jiang, Cheng ;
Li, Ziyao ;
Wu, Shichang ;
Zhai, Yadi ;
Wang, Li ;
Liu, Yinong ;
Zhang, Ze ;
Han, Xiaodong .
SCRIPTA MATERIALIA, 2024, 239
[3]   Inherent and multiple strain hardening imparting synergistic ultrahigh strength and ductility in a low stacking faulted heterogeneous high-entropy alloy [J].
An, Zibing ;
Mao, Shengcheng ;
Liu, Yinong ;
Yang, Luyan ;
Vayyala, Ashok ;
Wei, Xiao ;
Liu, Cheng ;
Shi, Caijuan ;
Jin, Huixin ;
Liu, Cuixiu ;
Zhang, Jianxin ;
Zhang, Ze ;
Han, Xiaodong .
ACTA MATERIALIA, 2023, 243
[4]   Multicomponent high-entropy Cantor alloys [J].
Cantor, B. .
PROGRESS IN MATERIALS SCIENCE, 2021, 120
[5]   Structural evolutions of metallic materials processed by severe plastic deformation [J].
Cao, Yang ;
Ni, Song ;
Liao, Xiaozhou ;
Song, Min ;
Zhu, Yuntian .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2018, 133 :1-59
[6]   What is behind the inverse Hall-Petch effect in nanocrystalline materials? [J].
Carlton, C. E. ;
Ferreira, P. J. .
ACTA MATERIALIA, 2007, 55 (11) :3749-3756
[7]   Ultra-strong heavy-drawn eutectic high entropy alloy wire [J].
Chen, Jin-Xi ;
Li, Tong ;
Chen, Yan ;
Cao, Fu-Hua ;
Wang, Hai-Ying ;
Dai, Lan-Hong .
ACTA MATERIALIA, 2023, 243
[8]   Anomalous size effect in micron-scale CoCrNi medium-entropy alloy wire [J].
Chen, Jin-Xi ;
Chen, Yan ;
Liu, Jun-Peng ;
Liu, Tian-Wei ;
Dai, Lan-Hong .
SCRIPTA MATERIALIA, 2021, 199
[9]   Stability of nanoscale twins in copper under electric current stressing [J].
Chen, Kuan-Chia ;
Wu, Wen-Wei ;
Liao, Chien-Neng ;
Chen, Lih-Juann ;
Tu, K. N. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (06)
[10]   Deformation twinning in nanocrystalline aluminum [J].
Chen, MW ;
Ma, E ;
Hemker, KJ ;
Sheng, HW ;
Wang, YM ;
Cheng, XM .
SCIENCE, 2003, 300 (5623) :1275-1277