Cohomology of the Lie conformal algebra W(a,b)

被引:0
作者
Wang, Jinrong [1 ]
Yue, Xiaoqing [1 ]
机构
[1] Tongji Univ, Sch Math Sci, Key Lab Intelligent Comp & Applicat, Minist Educ, Shanghai 200092, Peoples R China
关键词
Lie conformal algebra W(a; b); conformal modules; cohomology; TENSOR-DENSITIES; VIRASORO ALGEBRA; VERTEX ALGEBRAS; EXTENSIONS; MODULES;
D O I
10.1142/S0219498825503335
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lie conformal algebra W(a,b) with two parameters a,b is an element of C is a free C[partial derivative]-module generated by L and W satisfying [L lambda L] = (partial derivative + 2 lambda)L, [L lambda W] = (partial derivative + a lambda + b)W and [W lambda W] = 0, which is the semi-direct sums of Virasoro Lie conformal algebra and its nontrivial conformal modules of rank one. In this paper, we determine the basic and reduced cohomology groups of W(a,b) for the case of a is an element of{a <= 2 | a is an element of Q}boolean OR (C - Q) with coefficients in its module. In particular, the low-dimensional basic cohomology groups with trivial coefficients are completely determined.
引用
收藏
页数:33
相关论文
共 37 条
  • [1] Cohomology of conformal algebras
    Bakalov, B
    Kac, VG
    Voronov, AA
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (03) : 561 - 598
  • [2] Poisson vertex algebras in the theory of Hamiltonian equations
    Barakat, Aliaa
    De Sole, Alberto
    Kac, Victor G.
    [J]. JAPANESE JOURNAL OF MATHEMATICS, 2009, 4 (02): : 141 - 252
  • [3] Cheng S., 1997, ASIAN J MATH, V1, P181, DOI DOI 10.4310/AJM.1997.v1.n1.a6
  • [4] Cheng S.-J., 1998, Extensions of Conformal Modules, P79
  • [5] Extensions of Neveu-Schwarz conformal modules
    Cheng, SJ
    Kac, VG
    Wakimoto, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (04) : 2271 - 2294
  • [6] COHOMOLOGY THEORY OF LIE GROUPS AND LIE ALGEBRAS
    CHEVALLEY, C
    EILENBERG, S
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 63 (JAN) : 85 - 124
  • [7] D'Andrea A., 1998, SEL MATH-NEW SER, V4, P377, DOI [DOI 10.1007/s000290050036, 10.1007/s000290050036]
  • [8] Dorfman I., 1993, NONLINEAR SCI THEORY
  • [9] Feigin B. L., 1998, Selecta Math. Sov., V7, P49
  • [10] HOMOLOGY OF THE LIE-ALGEBRA OF VECTOR-FIELDS ON THE LINE
    FEIGIN, BL
    FUKS, DB
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1980, 14 (03) : 201 - 212