Deep learning microstructure estimation of developing brains from diffusion MRI: A newborn and fetal study

被引:4
作者
Kebiri, Hamza [1 ,2 ,3 ,4 ,5 ]
Gholipour, Ali [4 ,5 ]
Lin, Rizhong [2 ,3 ,6 ]
Vasung, Lana [5 ,7 ]
Calixto, Camilo [4 ,5 ]
Krsnik, Zeljka [8 ]
Karimi, Davood [4 ,5 ]
Cuadra, Meritxell Bach [1 ,2 ,3 ]
机构
[1] CIBM Ctr Biomed Imaging, Vaud, Switzerland
[2] Lausanne Univ Hosp CHUV, Dept Radiol, Lausanne, Switzerland
[3] Univ Lausanne UNIL, Lausanne, Switzerland
[4] Boston Childrens Hosp, Dept Radiol, Computat Radiol Lab, Boston, MA USA
[5] Harvard Med Sch, Boston, MA USA
[6] Ecole Polytech Fed Lausanne EPFL, Signal Proc Lab 5 LTS5, Lausanne, Switzerland
[7] Childrens Hosp Boston, Dept Pediat, Boston, MA USA
[8] Univ Zagreb, Croatian Inst Brain Res, Sch Med, Zagreb, Croatia
基金
瑞士国家科学基金会; 芬兰科学院; 美国国家卫生研究院; 美国国家科学基金会;
关键词
Deep learning; Brain microstructure; Newborns; Fetuses; Fiber orientation distribution; FIBER ORIENTATION; SLICE REGISTRATION; WILD BOOTSTRAP; WHITE-MATTER; TENSOR; UNCERTAINTY; RECONSTRUCTION; DENSITY; TRACTOGRAPHY; PARAMETERS;
D O I
10.1016/j.media.2024.103186
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diffusion -weighted magnetic resonance imaging (dMRI) is widely used to assess the brain white matter. Fiber orientation distribution functions (FODs) are a common way of representing the orientation and density of white matter fibers. However, with standard FOD computation methods, accurate estimation requires a large number of measurements that usually cannot be acquired for newborns and fetuses. We propose to overcome this limitation by using a deep learning method to map as few as six diffusion -weighted measurements to the target FOD. To train the model, we use the FODs computed using multi -shell high angular resolution measurements as target. Extensive quantitative evaluations show that the new deep learning method, using significantly fewer measurements, achieves comparable or superior results than standard methods such as Constrained Spherical Deconvolution and two state-of-the-art deep learning methods. For voxels with one and two fibers, respectively, our method shows an agreement rate in terms of the number of fibers of 77.5% and 22.2%, which is 3% and 5.4% higher than other deep learning methods, and an angular error of 10 degrees and 20 degrees , which is 6 degrees and 5 degrees lower than other deep learning methods. To determine baselines for assessing the performance of our method, we compute agreement metrics using densely sampled newborn data. Moreover, we demonstrate the generalizability of the new deep learning method across scanners, acquisition protocols, and anatomy on two clinical external datasets of newborns and fetuses. We validate fetal FODs, successfully estimated for the first time with deep learning, using post-mortem histological data. Our results show the advantage of deep learning in computing the fiber orientation density for the developing brain from in -vivo dMRI measurements that are often very limited due to constrained acquisition times. Our findings also highlight the intrinsic limitations of dMRI for probing the developing brain microstructure.
引用
收藏
页数:16
相关论文
共 83 条
  • [1] Reconstruction of the Orientation Distribution Function in Single- and Multiple-Shell q-Ball Imaging Within Constant Solid Angle
    Aganj, Iman
    Lenglet, Christophe
    Sapiro, Guillermo
    Yacoub, Essa
    Ugurbil, Kamil
    Harel, Noam
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2010, 64 (02) : 554 - 566
  • [2] Agarap A.F., 2018, arXiv
  • [3] MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING
    BASSER, PJ
    MATTIELLO, J
    LEBIHAN, D
    [J]. BIOPHYSICAL JOURNAL, 1994, 66 (01) : 259 - 267
  • [4] Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project
    Bastiani, Matteo
    Andersson, Jesper L. R.
    Cordero-Grande, Lucilio
    Murgasova, Maria
    Hutter, Jana
    Price, Anthony N.
    Makropoulos, Antonios
    Fitzgibbon, Sean P.
    Hughes, Emer
    Rueckert, Daniel
    Victor, Suresh
    Rutherford, Mary
    Edwards, A. David
    Smith, Stephen M.
    Tournier, Jacques-Donald
    Hajnal, Joseph V.
    Jbabdi, Saad
    Sotiropoulos, Stamatios N.
    [J]. NEUROIMAGE, 2019, 185 : 750 - 763
  • [5] Autism: cause factors, early diagnosis and therapies
    Bhat, Shreya
    Acharya, U. Rajendra
    Adeli, Hojjat
    Bairy, G. Muralidhar
    Adeli, Amir
    [J]. REVIEWS IN THE NEUROSCIENCES, 2014, 25 (06) : 841 - 850
  • [6] Early Second Trimester Maternal Serum Steroid-Related Biomarkers Associated with Autism Spectrum Disorder
    Bilder, Deborah A.
    Esplin, M. Sean
    Coon, Hilary
    Burghardt, Paul
    Clark, Erin A. S.
    Fraser, Alison
    Smith, Ken R.
    Worsham, Whitney
    Chappelle, Katlin
    Rayner, Thomas
    Bakian, Amanda V.
    [J]. JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS, 2019, 49 (11) : 4572 - 4583
  • [7] Detailed anatomic segmentations of a fetal brain diffusion tensor imaging atlas between 23 and 30 weeks of gestation
    Calixto, Camilo
    Machado-Rivas, Fedel
    Karimi, Davood
    Cortes-Albornoz, Maria C.
    Acosta-Buitrago, Lina M.
    Gallo-Bernal, Sebastian
    Afacan, Onur
    Warfield, Simon K.
    Gholipour, Ali
    Jaimes, Camilo
    [J]. HUMAN BRAIN MAPPING, 2023, 44 (04) : 1593 - 1602
  • [8] Scattered slice SHARD reconstruction for motion correction in multi-shell diffusion MRI
    Christiaens, Daan
    Cordero-Grande, Lucilio
    Pietsch, Maximilian
    Hutter, Jana
    Price, Anthony N.
    Hughes, Emer J.
    Vecchiato, Katy
    Deprez, Maria
    Edwards, A. David
    Hajnal, Joseph, V
    Tournier, J-Donald
    [J]. NEUROIMAGE, 2021, 225
  • [9] Christiaens Daan, 2019, Top Magn Reson Imaging, V28, P255, DOI 10.1097/RMR.0000000000000211
  • [10] Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters
    Chung, SungWon
    Lu, Ying
    Henry, Roland G.
    [J]. NEUROIMAGE, 2006, 33 (02) : 531 - 541