Robust parameter estimation for hybrid dynamical systems with linear parametric uncertainty

被引:0
作者
Johnson, Ryan S. [1 ]
Di Cairano, Stefano [2 ]
Sanfelice, Ricardo G. [1 ]
机构
[1] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA
[2] Mitsubishi Elect Res Labs, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Robust estimation; Estimation theory; Identification methods; Hybrid dynamical systems; TO-STATE STABILITY; ADAPTIVE-CONTROL; IDENTIFICATION;
D O I
10.1016/j.automatica.2024.111766
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of estimating a vector of unknown constant parameters for a class of hybrid dynamical systems - that is, systems whose state variables exhibit both continuous (flow) and discrete (jump) evolution - with dynamics that depend linearly on the unknown parameters. Using a hybrid systems framework, we propose a hybrid estimation algorithm that can operate during both flows and jumps that, under a notion of hybrid persistence of excitation, guarantees convergence of the parameter estimate to the true value. Furthermore, we show that the parameter estimate is input-to-state stable with respect to a class of hybrid disturbances. Simulation results including a spacecraft application show the merits of our proposed approach. (c) 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Multiple Lyapunov based robust control for the Nonlinear Hybrid Dynamical Systems
    Shah, Ankit K.
    Adhyaru, Dipak M.
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL (ISCO'16), 2016,
  • [32] Parameter estimation of linear and nonlinear systems based on orthogonal series
    Alejo, David
    Isidro, Lazaro
    Jesus, Rico
    Alvarez, Alberto
    INTERNATIONAL MEETING OF ELECTRICAL ENGINEERING RESEARCH 2012, 2012, 35 : 67 - 76
  • [33] Algebraic Parameter Estimation Using Kernel Representation of Linear Systems
    Ghoshal, Debarshi Patanjali
    Gopalakrishnan, Kumar
    Michalska, Hannah
    IFAC PAPERSONLINE, 2017, 50 (01): : 12898 - 12904
  • [34] Parameter Estimation in Linear Dynamic Systems using Bayesian networks
    Garan, Maryna
    Vernon, Sylvain
    Kovalenko, Iaroslav
    Modrlak, Osvald
    Lepsik, Petr
    PROCEEDINGS OF THE 2019 22ND INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC19), 2019, : 203 - 208
  • [35] Model reduction and parameter estimation of non-linear dynamical biochemical reaction networks
    Sun, Xiaodian
    Medvedovic, Mario
    IET SYSTEMS BIOLOGY, 2016, 10 (01) : 10 - 16
  • [36] A novel approach to parametrization and parameter estimation in linear dynamic systems
    Deistler, M
    Ribarits, T
    Hanzon, B
    COMPSTAT 2004: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2004, : 137 - 147
  • [37] Robust Adaptive Parameter Estimation and Tracking Control for Hydraulic Servo Systems
    Dong, Yu
    Na, Jing
    Wang, Shubo
    Gao, Guanbin
    He, Haoran
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 2468 - 2473
  • [38] A dual adaptive robust control for nonlinear systems with parameter and state estimation
    Chen, Ye
    Tao, Guoliang
    Yao, Yitao
    MEASUREMENT & CONTROL, 2024, 57 (04) : 378 - 390
  • [39] Identifiability implies robust, globally exponentially convergent on-line parameter estimation
    Wang, Lei
    Ortega, Romeo
    Bobtsov, Alexey
    Romero, Jose Guadalupe
    Yi, Bowen
    INTERNATIONAL JOURNAL OF CONTROL, 2024, 97 (09) : 1967 - 1983
  • [40] Robust Adaptive Control for Bilateral Teleoperation systems with Guaranteed Parameter Estimation
    Jing, Baorui
    Na, Jing
    Gao, Guanbin
    Yang, Chenguang
    IEEE ICARM 2016 - 2016 INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (ICARM), 2016, : 32 - 37