Cross-domain heterogeneous metasurface inverse design based on a transfer learning method

被引:3
作者
Gao, Fan [1 ,2 ]
Ou, Zhihao [1 ,2 ]
Yang, Chenchen [1 ,2 ]
Yang, Jinpeng [1 ,2 ]
Deng, Juan [1 ,2 ]
Yan, Bo [1 ,2 ]
机构
[1] Zhejiang Univ Technol, Dept Phys, Hangzhou 310023, Peoples R China
[2] Zhejiang Univ Technol, Collaborat Innovat Ctr Biomed Phys Informat Techno, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
NEURAL-NETWORKS;
D O I
10.1364/OL.514212
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this Letter, a transfer learning method is proposed to complete design tasks on heterogeneous metasurface datasets with distinct functionalities. Through fine-tuning the inverse design network and freezing the parameters of hidden layers, we successfully transfer the metasurface inverse design knowledge from the electromagnetic -induced transparency (EIT) domain to the three target domains of EIT (different design), absorption, and phase -controlled metasurface. Remarkably, in comparison to the source domain dataset, a minimum of only 700 target domain samples is required to complete the training process. This work presents a significant solution to lower the data threshold for the inverse design process and provides the possibility of knowledge transfer between different domain metasurface datasets. (c) 2024 Optica Publishing Group
引用
收藏
页码:2693 / 2696
页数:4
相关论文
共 23 条
  • [1] Deep learning modeling approach for metasurfaces with high degrees of freedom
    An, Sensong
    Zheng, Bowen
    Shalaginov, Mikhail Y.
    Tang, Hong
    Li, Hang
    Zhou, Li
    Ding, Jun
    Agarwal, Anuradha Murthy
    Rivero-Baleine, Clara
    Kang, Myungkoo
    Richardson, Kathleen A.
    Gu, Tian
    Hu, Juejun
    Fowler, Clayton
    Zhang, Hualiang
    [J]. OPTICS EXPRESS, 2020, 28 (21): : 31932 - 31942
  • [2] A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design
    An, Sensong
    Fowler, Clayton
    Zheng, Bowen
    Shalaginov, Mikhail Y.
    Tang, Hong
    Li, Hang
    Zhou, Li
    Ding, Jun
    Agarwal, Anuradha Murthy
    Rivero-Baleine, Clara
    Richardson, Kathleen A.
    Gu, Tian
    Hu, Juejun
    Zhang, Hualiang
    [J]. ACS PHOTONICS, 2019, 6 (12) : 3196 - 3207
  • [3] CONVERGENCE AND DYNAMICAL BEHAVIOR OF THE ADAM ALGORITHM FOR NONCONVEX STOCHASTIC OPTIMIZATION
    Barakat, Anas
    Bianchi, Pascal
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (01) : 244 - 274
  • [4] Cawley GC, 2010, J MACH LEARN RES, V11, P2079
  • [5] Ethan T., 2021, Nat. Commun., V12, P6493
  • [6] Transfer-Learning-Assisted Inverse Metasurface Design for 30% Data Savings
    Fan, Zhixiang
    Qian, Chao
    Jia, Yuetian
    Chen, Min
    Zhang, Jie
    Cui, Xingshuo
    Li, Er -Ping
    Zheng, Bin
    Cai, Tong
    Chen, Hongsheng
    [J]. PHYSICAL REVIEW APPLIED, 2022, 18 (02):
  • [7] In Situ Customized Illusion Enabled by Global Metasurface Reconstruction
    Jia, Yuetian
    Qian, Chao
    Fan, Zhixiang
    Ding, Yinzhang
    Wang, Zhedong
    Wang, Dengpan
    Li, Er-Ping
    Zheng, Bin
    Cai, Tong
    Chen, Hongsheng
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (19)
  • [8] Global Optimization of Dielectric Metasurfaces Using a Physics-Driven Neural Network
    Jiang, Jiaqi
    Fan, Jonathan A.
    [J]. NANO LETTERS, 2019, 19 (08) : 5366 - 5372
  • [9] Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images
    Khosravi, Pegah
    Kazemi, Ehsan
    Imielinski, Marcin
    Elemento, Olivier
    Hajirasouliha, Iman
    [J]. EBIOMEDICINE, 2018, 27 : 317 - 328
  • [10] Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures
    Liu, Dianjing
    Tan, Yixuan
    Khoram, Erfan
    Yu, Zongfu
    [J]. ACS PHOTONICS, 2018, 5 (04): : 1365 - 1369