ON FLAT MANIFOLD BUNDLES AND THE CONNECTIVITY OF HAEFLIGER'S CLASSIFYING SPACES

被引:0
作者
Nariman, Sam [1 ]
机构
[1] Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA
关键词
CLASSICAL LIE-GROUPS; SMALE CONJECTURE; CO-HOMOLOGY; COHOMOLOGY; FOLIATIONS; DISCRETE;
D O I
10.1090/proc/16941
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a conjecture due to Haefliger and Thurston in the context of foliated manifold bundles. In this context, Haefliger-Thurston's conjecture predicts that every M-bundle over a manifold B where dim(B) <= dim(M) is cobordant to a flat M-bundle. In particular, we study the bordism class of flat M-bundles over low dimensional manifolds, comparing a finite dimensional Lie group G with Diff(0)(G).
引用
收藏
页码:4943 / 4957
页数:15
相关论文
共 49 条
[1]   K2 OF QUATERNION ALGEBRAS [J].
ALPERIN, RC ;
DENNIS, RK .
JOURNAL OF ALGEBRA, 1979, 56 (01) :262-273
[2]   RICCI FLOW AND DIFFEOMORPHISM GROUPS OF 3-MANIFOLDS [J].
Bamler, Richard H. ;
Kleiner, Bruce .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 36 (02) :563-589
[3]  
Bamler Richard H., 2019, PREPRINT
[4]   COHOMOLOGY OF VECTOR FIELDS ON A MANIFOLD [J].
BOTT, R ;
SEGAL, G .
TOPOLOGY, 1977, 16 (04) :285-298
[5]  
Bott Raoul., 1972, Lectures on Algebraic and Differential Topology, volume 279 of Lecture Notes in Mathematics, P1
[6]   SPLIT COMPLEXES, CONTINUOUS COHOMOLOGY, AND LIE-ALGEBRAS [J].
BROWN, EH ;
SZCZARBA, RH .
QUARTERLY JOURNAL OF MATHEMATICS, 1994, 45 (179) :279-299
[7]  
Brylinski, 1993, GELF MATH SEM BIRKH, P1
[8]  
DELAHARPE P, 1983, COMMENT MATH HELV, V58, P48
[9]  
Dupont, 2001, NANKAI TRACTS MATH, V1
[10]   HOMOLOGY OF CLASSICAL LIE-GROUPS MADE DISCRETE .2. H-2, H-3, AND RELATIONS WITH SCISSORS CONGRUENCES [J].
DUPONT, JL ;
PARRY, W ;
SAH, CH .
JOURNAL OF ALGEBRA, 1988, 113 (01) :215-260