Visually quantifying single-qubit quantum memory

被引:1
|
作者
Chang, Wan-Guan [1 ,2 ]
Ju, Chia-Yi [3 ,4 ,5 ]
Chen, Guang-Yin [5 ,6 ,7 ]
Chen, Yueh-Nan [1 ,2 ,5 ]
Ku, Huan-Yu [8 ]
机构
[1] Natl Cheng Kung Univ, Dept Phys, Tainan 701, Taiwan
[2] Natl Cheng Kung Univ, Ctr Quantum Frontiers Res & Technol QFort, Tainan 701, Taiwan
[3] Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 80424, Taiwan
[4] Natl Sun Yat Sen Univ, Ctr Theoret & Computat Phys, Kaohsiung 80424, Taiwan
[5] Natl Ctr Theoret Sci, Phys Div, Taipei 106319, Taiwan
[6] Natl Chung Hsing Univ, Dept Phys, Taichung 402, Taiwan
[7] Natl Ctr Theoret Sci, Phys Div, Taipei 10617, Taiwan
[8] Natl Taiwan Normal Univ, Dept Phys, Taipei 11677, Taiwan
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 02期
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; ENTANGLEMENT; TELEPORTATION; SEPARABILITY; CRYPTOGRAPHY; DYNAMICS; CHANNELS; STATES; QUTIP; GATES;
D O I
10.1103/PhysRevResearch.6.023035
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To store quantum information, quantum memory plays a central intermediate ingredient in a network. The minimal criterion for a reliable quantum memory is the maintenance of the entangled state, which can be described by the non-entanglement-breaking (non-EB) channel. In this work, we show that all single-qubit quantum memory can be quantified without trusting input state generation. In other words, we provide a semi-device-independent approach to quantify all single-qubit quantum memory. More specifically, we apply the concept of the two-qubit quantum steering ellipsoids to a single-qubit quantum channel and define the channel ellipsoids. An ellipsoid can be constructed by visualizing finite output states within the Bloch sphere. Since the Choi-Jamio & lstrok;kowski state of a channel can all be reconstructed from geometric data of the channel ellipsoid, a reliable quantum memory can be detected. Finally, we visually quantify the single-qubit quantum memory by observing the volume of the channel ellipsoid.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Multihop fault-tolerant joint remote state preparation of an arbitrary single-qubit state
    Gong, Renzhi
    Jiang, Min
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2022, 39 (11) : 3066 - 3073
  • [42] NEW EXPERIMENTAL PROTOCOL OF TELEPORTING AN ARBITRARY SINGLE-QUBIT STATE BY USING HYPERENTANGLED PHOTON PAIRS
    Cao, Wen-Zhen
    Wu, Yan-Hua
    Li, Chong
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (08) : 1515 - 1520
  • [43] Implementation of Single-Qubit Gates via Parametric Modulation in the Majorana Transmon
    Lupo, E.
    Grosfeld, E.
    Ginossar, E.
    PRX QUANTUM, 2022, 3 (02):
  • [44] TELEPORTING AND SPLITTING ARBITRARY SINGLE-QUBIT INFORMATION USING A CLASS OF THREE-QUBIT W STATES
    Yang, Jie
    Liu, Yi-Min
    Zuo, Xue-Qin
    Zhang, Zhan-Jun
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (07) : 1349 - 1356
  • [45] Tripartition of Arbitrary Single-Qubit Information via a Class of Asymmetric Four-Qubit W State
    Yin Xiao-Feng
    Liu Yi-Min
    Shi Shi-Wei
    Zhang Wen
    Zhang Zhan-Jun
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 52 (04) : 606 - 610
  • [46] Quantum Fisher information for a single qubit system
    Abdel-Khalek, S.
    Berrada, K.
    Obada, A. S. F.
    EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (03):
  • [47] Error rate reduction of single-qubit gates via noise-aware decomposition into native gates
    Maldonado, Thomas J.
    Flick, Johannes
    Krastanov, Stefan
    Galda, Alexey
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [48] Enhancing teleportation of a single-qubit state by the unitary transformation in arbitrary decoherence rate
    Chen, Zun-Yi
    Xu, Jin-Rong
    Yu, Jiangying
    Hou, Kui
    PHYSICA SCRIPTA, 2021, 96 (03)
  • [49] Cluster-state preparation in thermal cavities without single-qubit operation
    张小龙
    冯芒
    高克林
    Chinese Physics B, 2008, (01) : 43 - 48
  • [50] Deterministic remote preparation of arbitrary single-qubit state via one intermediate node in noisy environment
    Qian, Ying-jia
    Xue, Shi-bei
    Jiang, Min
    PHYSICS LETTERS A, 2020, 384 (10)