Visually quantifying single-qubit quantum memory

被引:1
|
作者
Chang, Wan-Guan [1 ,2 ]
Ju, Chia-Yi [3 ,4 ,5 ]
Chen, Guang-Yin [5 ,6 ,7 ]
Chen, Yueh-Nan [1 ,2 ,5 ]
Ku, Huan-Yu [8 ]
机构
[1] Natl Cheng Kung Univ, Dept Phys, Tainan 701, Taiwan
[2] Natl Cheng Kung Univ, Ctr Quantum Frontiers Res & Technol QFort, Tainan 701, Taiwan
[3] Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 80424, Taiwan
[4] Natl Sun Yat Sen Univ, Ctr Theoret & Computat Phys, Kaohsiung 80424, Taiwan
[5] Natl Ctr Theoret Sci, Phys Div, Taipei 106319, Taiwan
[6] Natl Chung Hsing Univ, Dept Phys, Taichung 402, Taiwan
[7] Natl Ctr Theoret Sci, Phys Div, Taipei 10617, Taiwan
[8] Natl Taiwan Normal Univ, Dept Phys, Taipei 11677, Taiwan
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 02期
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; ENTANGLEMENT; TELEPORTATION; SEPARABILITY; CRYPTOGRAPHY; DYNAMICS; CHANNELS; STATES; QUTIP; GATES;
D O I
10.1103/PhysRevResearch.6.023035
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To store quantum information, quantum memory plays a central intermediate ingredient in a network. The minimal criterion for a reliable quantum memory is the maintenance of the entangled state, which can be described by the non-entanglement-breaking (non-EB) channel. In this work, we show that all single-qubit quantum memory can be quantified without trusting input state generation. In other words, we provide a semi-device-independent approach to quantify all single-qubit quantum memory. More specifically, we apply the concept of the two-qubit quantum steering ellipsoids to a single-qubit quantum channel and define the channel ellipsoids. An ellipsoid can be constructed by visualizing finite output states within the Bloch sphere. Since the Choi-Jamio & lstrok;kowski state of a channel can all be reconstructed from geometric data of the channel ellipsoid, a reliable quantum memory can be detected. Finally, we visually quantify the single-qubit quantum memory by observing the volume of the channel ellipsoid.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Experimental replication of single-qubit quantum phase gates
    Micuda, M.
    Starek, R.
    Straka, I.
    Mikova, M.
    Sedlak, M.
    Jezek, M.
    Fiurasek, J.
    PHYSICAL REVIEW A, 2016, 93 (05)
  • [2] Practical Approximation of Single-Qubit Unitaries by Single-Qubit Quantum Clifford and T Circuits
    Kliuchnikov, Vadym
    Maslov, Dmitri
    Mosca, Michele
    IEEE TRANSACTIONS ON COMPUTERS, 2016, 65 (01) : 161 - 172
  • [3] Single-qubit quantum memory exceeding ten-minute coherence time
    Wang, Ye
    Um, Mark
    Zhang, Junhua
    An, Shuoming
    Lyu, Ming
    Zhang, Jing-Ning
    Duan, L-M.
    Yum, Dahyun
    Kim, Kihwan
    NATURE PHOTONICS, 2017, 11 (10) : 646 - +
  • [4] REMOTE IMPLEMENTATION OF AN UNKNOWN SINGLE-QUBIT OPERATION BY DIFFERENT DIMENSIONAL QUANTUM CHANNEL
    Zhan, You-Bang
    Ma, Peng-Cheng
    Zhang, Qun-Yong
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2012, 10 (07)
  • [5] Quantum signal transmission through a single-qubit chain
    Greenberg, Y. S.
    Merrigan, C.
    Tayebi, A.
    Zelevinsky, V.
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (09):
  • [6] Learning quantum phases via single-qubit disentanglement
    An, Zheng
    Cao, Chenfeng
    Xu, Cheng-Qian
    Zhou, D. L.
    QUANTUM, 2024, 8
  • [7] Universal quantum simulation of single-qubit nonunitary operators using duality quantum algorithm
    Zheng, Chao
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [8] One-step transfer or exchange of arbitrary multipartite quantum states with a single-qubit coupler
    Yang, Chui-Ping
    Su, Qi-Ping
    Zheng, Shi-Biao
    Han, Siyuan
    PHYSICAL REVIEW B, 2015, 92 (05):
  • [9] Deterministic single-qubit operation sharing with five-qubit cluster state
    Wang, Shengfang
    Liu, Yimin
    Chen, Jianlan
    Liu, Xiansong
    Zhang, Zhanjun
    QUANTUM INFORMATION PROCESSING, 2013, 12 (07) : 2497 - 2507
  • [10] Role of single-qubit decoherence time in adiabatic quantum computation
    Amin, M. H. S.
    Truncik, C. J. S.
    Averin, D. V.
    PHYSICAL REVIEW A, 2009, 80 (02)