Convergence Analysis of ODE Models for Accelerated First-Order Methods via Positive Semidefinite Kernels

被引:0
作者
Kim, Jungbin [1 ]
Yang, Insoon [1 ]
机构
[1] Seoul Natl Univ, Seoul, South Korea
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023) | 2023年
基金
新加坡国家研究基金会;
关键词
WORST-CASE PERFORMANCE; OPTIMIZATION ALGORITHMS; GRADIENT-METHOD; CONVEX;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel methodology that systematically analyzes ordinary differential equation (ODE) models for first-order optimization methods by converting the task of proving convergence rates into verifying the positive semidefiniteness of specific Hilbert-Schmidt integral operators. Our approach is based on the performance estimation problems (PEP) introduced by Drori and Teboulle [8]. Unlike previous works on PEP, which rely on finite-dimensional linear algebra, we use tools from functional analysis. Using the proposed method, we establish convergence rates of various accelerated gradient flow models, some of which are new. As an immediate consequence of our framework, we show a correspondence between minimizing function values and minimizing gradient norms.
引用
收藏
页数:13
相关论文
共 49 条
  • [1] Alimisis F, 2020, PR MACH LEARN RES, V108, P1297
  • [2] [Anonymous], 2017, PMLR
  • [3] Attouch H, 2019, ESAIM CONTR OPTIM CA, V25, DOI 10.1051/cocv/2017083
  • [4] Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity
    Attouch, Hedy
    Chbani, Zaki
    Peypouquet, Juan
    Redont, Patrick
    [J]. MATHEMATICAL PROGRAMMING, 2018, 168 (1-2) : 123 - 175
  • [5] Betancourt M., 2018, ARXIV180203653
  • [6] On the worst-case complexity of the gradient method with exact line search for smooth strongly convex functions
    de Klerk, Etienne
    Glineur, Francois
    Taylor, Adrien B.
    [J]. OPTIMIZATION LETTERS, 2017, 11 (07) : 1185 - 1199
  • [7] GENERALIZED MOMENTUM-BASED METHODS: A HAMILTONIAN PERSPECTIVE
    Diakonikolas, Jelena
    Jordan, Michael, I
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (01) : 915 - 944
  • [8] Efficient first-order methods for convex minimization: a constructive approach
    Drori, Yoel
    Taylor, Adrien B.
    [J]. MATHEMATICAL PROGRAMMING, 2020, 184 (1-2) : 183 - 220
  • [9] Performance of first-order methods for smooth convex minimization: a novel approach
    Drori, Yoel
    Teboulle, Marc
    [J]. MATHEMATICAL PROGRAMMING, 2014, 145 (1-2) : 451 - 482
  • [10] Even Mathieu, ADV NEURAL INFORM PR, P28054